
TotalView User Guide

Version 2023.4
November, 2023

TotalView by Perforce
http://totalview.io

Use of the Documentation and implementation of any of its processes or techniques are the sole responsibility of the client, and Perforce
Software, Inc., assumes no responsibility and will not be liable for any errors, omissions, damage, or loss that might result from any use or
misuse of the Documentation.

ROGUE WAVE MAKES NO REPRESENTATION ABOUT THE SUITABILITY OF THE DOCUMENTATION. THE DOCUMENTATION
IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. ROGUE WAVE HEREBY DISCLAIMS ALL WARRANTIES AND CON-
DITIONS WITH REGARD TO THE DOCUMENTATION, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE,
INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PUR-
POSE, OR NONINFRINGEMENT. IN NO EVENT SHALL PERFORCE SOFTWARE, INC. BE LIABLE, WHETHER IN CONTRACT,
TORT, OR OTHERWISE, FOR ANY SPECIAL, CONSEQUENTIAL, INDIRECT, PUNITIVE, OR EXEMPLARY DAMAGES IN CONNEC-
TION WITH THE USE OF THE DOCUMENTATION.

The Documentation is subject to change at any time without notice.

ACKNOWLEDGMENTS

Copyright 2007-2023 by Rogue Wave Software, Inc., a Perforce company (“Rogue Wave”). All rights reserved.
Copyright 1998–2007 by Etnus LLC. All rights reserved.
Copyright 1996–1998 by Dolphin Interconnect Solutions, Inc.
Copyright 1993–1996 by BBN Systems and Technologies, a division of BBN Corporation.
All trademarks and registered trademarks are the property of their respective owners.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise without the prior written permission of Rogue Wave.

Perforce has prepared this manual for the exclusive use of its customers, personnel, and licensees. The information in
this manual is subject to change without notice, and should not be construed as a commitment by Perforce. Perforce
assumes no responsibility for any errors that appear in this document.
TotalView and TotalView Technologies are registered trademarks of Rogue Wave. TVD is a trademark of Rogue Wave.
Perforce uses a modified version of the Microline widget library. Under the terms of its license, you are entitled to use
these modifications. The source code is available at https://rwkbp.makekb.com/.
All other brand names are the trademarks of their respective holders.

https://rwkbp.makekb.com/

iii

Part 1: An Introduction to TotalView. 1

 Getting Started

Introducing TotalView . 3

An Initial Look at the Interface . 4
Customizing the Interface. 4

Preferences . 4
Resizing . 5
Drawers . 5
Undocking and Docking . 5

A Tour of the Interface. 6
Central Area . 6
Toolbars. 9
Processes and Threads View . 10
Call Stack View and Local Variables View . 12
Data View . 13
Lookup View . 13
Action Points, CLI, and Logger Views . 14
Input/Output View . 15
Help. 16

Starting TotalView and Creating a Debugging Session. 19
Debugging Commands . 21
Diving on Program Elements . 22

Creating and Managing Sessions

Setting up Debugging Sessions. 25
Loading Programs from the Session Editor . 25

Starting a Debugging Session . 26
Debug a Program . 28
Debug a Parallel Program . 29
Attach to Process . 32
Debug a Core or Replay Recording File. 36
Load a Recent Session . 38
Editing a Previous Session . 38

Loading Programs Using the CLI . 38

Options and Program Arguments . 40
Debug Options . 40

Contents

iv

Contents

Program Environment .41
Working Directory .41
Environment Variables for the Program .41

Standard Input and Output . 42
Modifying Arguments in an Open Session. 43

Managing Sessions . 46

Starting a Session from your Shell . 50
Starting TotalView on a Script .51

 Basic Debugging

Program Load and Navigation. 54
Load the Program to Debug . 54

Initial Display . 56
Program Navigation. 58

Stepping and Executing . 59
Simple Stepping . 59

Setting and Running to a Breakpoint (Action Point) . 62
Set and Control Breakpoints . 62
Run Your Program and Observe the Call Stack . 64

Examining Data. 66
Viewing Variables in the Local Variables View . 66
Viewing Variables in the Data View. 68

Watching Data Values Update . 69

Moving On . 73

Program Navigation

Navigating from within the Source Pane . 75

Highlighting a String and the Find Function . 76

The Lookup File or Function View . 78

The Documents View . 80

Part 2: Debugging Tools and Tasks .81

 Setting and Managing Action Points (Breakpoints)

About Action Points. 83

Breakpoints . 85
Setting Source-Level Breakpoints . 85

Sliding Breakpoints . 87
Breakpoints at a Specific Location. 88
Pending Breakpoints . 89

v

Contents

Pending Breakpoints on a Function . 90
Pending Breakpoints on a Line Number .91
Conflicting Breakpoints .91

Breakpoints at Execution . 92
Modifying a Breakpoint . 92
Setting Breakpoints When Using the fork()/execve() Functions . 94

Debugging Processes That Call the fork() Function . 94
Debugging Processes that Call the execve() Function . 94
Example: Multi-process Breakpoint . 95

Evalpoints . 97
Setting an Evalpoint . 98
Creating a Pending Evalpoint . 100
Modifying an Evalpoint . 102
Creating Conditional Breakpoints . 102
Patching Programs. 103

Branching Around Code . 104
Adding a Function Call . 104
Correcting Code . 105
Using Programming Language Constructs. 105

Watchpoints . 107
Creating Watchpoints . 108

Displaying, Deleting, or Disabling Watchpoints . 109
Modifying Watchpoints. 110
Watching Memory. 111
Triggering Watchpoints . 112

Using Multiple Watchpoints . 112
Performance Impact of Copying Previous Data Values . 113

Using Watchpoint Expressions . 113
Using Watchpoints on Different Architectures. 114

Barrier Points . 117
About Barrier Breakpoint States . 117
Setting a Barrier Breakpoint. 118
Creating a Satisfaction Set. 120
Hitting a Barrier Point. 121
Releasing Processes from Barrier Points . 122
Changing Settings and Disabling a Barrier Point . 122
Using Barrier Points . 122

Barrier Point Illustration . 123

Controlling an Action Point’s Width. 125
About an Action Point’s Width: Group, Process or Thread . 125
Setting the Action Point’s Width. 125
Action Point Width and Process/Thread State. 126

Managing and Diving on Action Points . 130

vi

Contents

Sorting . 130
Diving . 131
Deleting, Disabling, and Suppressing . 131
Saving and Loading Action Points. 134

More on Action Points Using the CLI . 136
Breakpoints . 137
Evalpoints. 137
Watchpoints. 138
Barrier Points . 140

Saving Action Points to a File Using the CLI . 141
Suppressing and Unsuppressing Action Points . 142

 Examining and Editing Data

Viewing Data in TotalView . 143

About Expressions . 144
Using C++ . 145

The Call Stack, Local Variables, and Registers Views . 147
The Call Stack View . 147
The Local Variables View . 148
The Registers View. 151

Edit or Cast a Register . 152
Viewing Call Stack Data. 152
Viewing Data in Fortran . 154

Viewing Modules and Their Data . 154
Common Blocks . 156
Fortran 90 User-Defined Types . 156
Fortran 90 Deferred Shape Array Types . 157
Fortran 90 Pointer Types . 158
Fortran Parameters. 159

The Data View . 161
Adding Variables to the Data View . 161

Add to the Data View from the Local Variables View . 162
Move a Variable from the Source View to the Data View. 163
Create a New Expression from within the Data View. 164

Diving on Variables . 167
Working with Complex Variables in the Data View . 168

Viewing Elements of Complex Variables . 168
Diving on Complex Variables . 169

Editing an Expression . 171
Dereferencing a Pointer. 171
Changing the Value of Data . 171
Casting to Another Type . 172

Displaying Arrays . 175

vii

Contents

Viewing Individual Elements in an Array of Structures . 176
The Dive In All Command . 176

Controlling STL Data Transformation . 181
Customizing the Data View . 183

The Data View Drawer . 184

The Array View . 185
Adding Arrays to the Array View . 185

The Array View Toolbar . 186
Array Statistics and Visualization . 186

Viewing Array Statistics . 187
Visualizing Array Data . 189

Configuring Arrays. 194
Slicing Arrays . 195
Casting to Another Type in the Array View. 199

Using the CLI to Examine Data. 200
Changing the Display of Data . 200
Displaying Variables . 201

 The Processes and Threads View

Processes and Threads View Basics . 204

Customize the Display . 206

The Processes and Threads View in Relation to Other Views 210

Displaying a Thread Name . 211
Thread Names in the UI . 211
Thread Properties . 213
Thread Options on dstatus . 213

Process and Thread Attributes. 215

 Debugging Python

Overview . 218

Python Debugging Requirements . 219
Python Version . 219
Limitations and Extensions: . 219

Starting a Python Debugging Session . 221

Debugging Python and C/C++ with TotalView . 223
Transforming the Stack . 224

Viewing and Comparing Python and C/C++ Variables . 226

Leveraging Other Debugging Technologies for Python Debugging 228

Supported Python Extension Technologies for Stack Transformations. 229

viii

Contents

 Using the Command Line Interface (CLI)

Access to the CLI . 232

Introduction to the CLI . 234

About the CLI and Tcl . 235
Integration of the CLI and the UI . 235
Invoking CLI Commands . 236

Starting the CLI in a Terminal Window . 237
Startup Example. 237
Starting Your Program . 238

About CLI Output. 240
‘more’Processing. 241

Using Command Arguments . 242

Using Namespaces . 243

About the CLI Prompt . 244

Using Built-in and Group Aliases. 245

How Parallelism Affects Behavior . 246
Types of IDs . 247

Controlling Program Execution Using CLI Commands . 248
Advancing Program Execution . 248
Using Action Points . 249

Examples of Using the CLI . 250
Setting the CLI EXECUTABLE_PATH Variable . 250
Initializing an Array Slice . 251
Printing an Array Slice . 252
Writing an Array Variable to a File . 253
Automatically Setting Breakpoints . 253

 Reverse Connections

About Reverse Connections . 257
Reverse Connection Environment Variables . 259

TV_REVERSE_CONNECT_DIR . 259
TV_CONNECT_OPTIONS . 259

Starting a Reverse Connect Session . 261
Listening for Reverse Connections . 262

Reverse Connect Examples . 263
CLI Example . 263
MPI Batch Script Example . 263

ix

Contents

Troubleshooting Reverse Connections . 265
Stale Files in the Reverse Connect Directory . 265
Directory Permissions . 265
User ID Issues . 265
Reverse Connect Directory Environment Variable . 265

 Preferences

About Preferences . 267

Action Points . 268

Display Settings . 269

Tool Bar . 271

Search Path . 272

Parallel Configuration . 275

Remote Connection Settings. 277

Part 3: Parallel Debugging . 278

About Parallel Debugging in TotalView

Parallel Program Execution Models . 280

Viewing Process and Thread State . 281

Controlling Program Execution. 282
TotalView Groups . 283
Synchronizing Execution with Barrier Points . 284

Configuring TotalView for Parallel Debugging . 285

Setting Up Parallel Sessions

Parallel Program Setup in the UI . 288

Non-MPI Program Setup . 289
The SLURM Resource Manager. 289
Cray XT/XE/XK/XC Applications . 290

Starting TotalView on Cray . 290
Support for Cray Abnormal Termination Processing (ATP) . 292
Special Requirements for Using ReplayEngine. 292

 Global Arrays Applications (Classic UI Only) . 292
Shared Memory (SHMEM) Code . 294
UPC Programs . 295

Invoking TotalView . 295
Viewing Shared Objects (Classic UI Only) . 295
Displaying Pointer to Shared Variables (Classic UI Only) . 297

CoArray Fortran (CAF) Programs. 299

x

Contents

Invoking TotalView . 299
Viewing CAF Programs (Classic UI Only). 299
Using CLI with CAF . 300

MPI Program Setup . 302
MPICH Applications . 302

Starting TotalView on an MPICH Job . 303
Attaching to an MPICH Job . 304
Using MPICH P4 procgroup Files . 305

MPICH2 Applications . 306
Downloading and Configuring MPICH2 . 306
Starting TotalView Debugging on an MPICH2 Hydra Job . 307
Starting TotalView Debugging on an MPICH2 MPD Job. 307

Cray MPI Applications . 308
IBM MPI Parallel Environment (PE) Applications. 308

Preparing to Debug a PE -Application . 309
Starting TotalView on a PE Program . 310
Setting Breakpoints . 310
Starting Parallel Tasks . 310
Attaching to a PE Job . 311

Open MPI Applications . 312
QSW RMS Applications. 313

Starting TotalView on an RMS Job. 313
Attaching to an RMS Job . 313

SGI MPI Applications. 314
Starting TotalView on an SGI MPI Job . 314
Attaching to an SGI MPI Job . 314
Using ReplayEngine with SGI MPI. 315

Sun MPI Applications. 315
Attaching to a Sun MPI Job . 316

Troubleshooting MPI Startup . 316
Using ReplayEngine with Infiniband MPIs . 317
MPI Startup Customizations . 319

Customizing Your Parallel Configuration . 319
Example Parallel Configuration Definitions . 320

Debugging OpenMP Applications

OpenMP and the OMPD API . 326
OMPD Requirements. 326

OpenMP Setup and Configuration. 327
Enabling OpenMP Debugging. 327
Enabling Stack Filtering . 327

Running Your Program . 329
The Call Stack. 329
The OpenMP View . 331

xi

Contents

Hybrid Programming: Combining OpenMP with MPI . 336

Controlling fork, vfork, and execve Handling

The exec_handling and fork_handling Command Options and State Variables . . 339
Exec Handling . 340
Fork Handling . 340
Example . 340

Group, Process, and Thread Control
Overview . 342

Groups in TotalView . 344
What Is a Group? . 344
Types of Groups Created by TotalView . 345
How TotalView Creates Groups . 345

Groups Created When a Program Calls fork()/exec() . 346
Groups Created for MPI Programs . 346
Groups Created for CUDA Programs . 347

Executing a Single Share Group . 348
Single Stepping While Focused on a Share Group . 350

Arenas and P/T Sets . 352
Arena Specifiers in a P/T Set . 352

P/T Set and Arena Identifier Syntax . 352
Process and Thread Width Specifiers in a P/T Set . 353
Group Specifiers in P/T Sets . 355

Identifying a Group Using a Letter . 355
Identifying a Group Using a Number . 356
Identifying a Group Using a Name . 356

Arena Specifier Examples . 356
Naming Incomplete Arenas . 356
Combining Arena and Group Specifiers . 357
Naming Lists with Inconsistent Widths . 359
Merging Focuses . 360

Using P/T Set Operators . 360
Setting and Creating Custom Groups . 362

Using the g Specifier: An Extended Example . 363
Changing the P/T Using the dfocus Command. 365

Stepping and Program Execution . 367
Individual Execution Commands . 368
Executing at Group Width . 369
Executing at Process Width. 370
Executing at Thread Width . 370
Synchronizing Processes and Threads . 371

Holding and Releasing Processes and Threads . 371
Using Run To and duntil. 372

xii

Contents

CLI Stepping Examples . 373
Execution Commands Using the “all” Arena Specifier . 374

Scalability in HPC Computing Environments

Configuring TotalView for Scalability . 377
Disable User-Thread Debugging . 377
Tune Dynamic Library Load Processing . 377

Filtering dlopen Events . 377
Handling dlopen Events in Parallel . 378

MRNet . 379
TotalView Infrastructure Models . 379
Using MRNet with TotalView . 381

General Use . 381
Using MRNet on Cray Computers . 385

Part 4: Accessing TotalView Remotely . 389

TotalView Remote Connections

About Remote Connections . 391

Configuring a Remote Connection. 392

Debugging on a Remote Connection . 395

TotalView Remote Display

Remote Display Supported Platforms . 398

Remote Display Components . 399

Installing the Client . 400
Installing on Linux . 400
Installing on Microsoft Windows. 400
Installing on macOS. 401

Client Session Basics . 402
Working on the Remote Host . 405

Advanced Options . 406

Naming Intermediate Hosts . 408

Submitting a Job to a Batch Queuing System . 409

Setting Up Your Systems and Security . 411

Session Profile Management . 412

Batch Scripts . 414
tv_PBS.csh Script . 414
tv_LoadLeveler.csh Script . 415

xiii

Contents

Part 5: GPU Debugging . 416

 Debugging CUDA Programs

NVIDIA CUDA Debugging Overview . 419
Installing the CUDA SDK Tool Chain . 419
Directive-Based Accelerator Programming Languages . 420

 CUDA Debugging Model and Unified Display. 421
The TotalView CUDA Debugging Model. 421
Pending and Sliding Breakpoints . 423
Unified Source View and Breakpoint Display . 423

 CUDA Debugging Tutorial . 425

Compiling for Debugging . 426
Compiling for Fermi. 426
Compiling for Fermi and Tesla . 426
Compiling for Kepler . 426
Compiling for Pascal . 426
Compiling for Volta . 427

Starting a TotalView CUDA Session . 427
Controlling Execution . 428

Viewing GPU Threads . 428
Single-Stepping GPU Code . 431
Halting a Running Application . 432

Displaying CUDA Program Elements . 432
GPU Assembler Display. 432
GPU Variable and Data Display . 432
Managed Memory Variables. 434
About Managed Memory . 434
How TotalView Displays Managed Variables . 434
CUDA Built-In Runtime Variables. 435
Type Casting . 436
PTX Registers . 438

The GPU Status View . 439
The GPU Status View Focus Options . 440
Configuring the GPU Status View . 442

Enabling CUDA Memory Checker Feature . 449
GPU Core Dump Support . 451
GPU Error Reporting . 451

 CUDA Problems and Limitations . 454

Hangs or Initialization Failures . 455

CUDA and ReplayEngine . 456

 Sample CUDA Program . 457

xiv

Contents

 Debugging AMD ROCm Programs

AMD ROCm Debugging Overview . 462
Installing the AMD Tool Chain . 462

AMD ROCm Debugging Model and Unified Display. 463
The TotalView AMD ROCm Debugging Model. 463
Disabling Deferred GPU Image Loading . 465
Pending and Sliding Breakpoints . 465
Unified Source View and Breakpoint Display . 466

 AMD ROCm Debugging Tutorial . 468
Compiling for Debugging. 468
Starting a TotalView ROCm Session . 468
Controlling Execution . 469

Viewing GPU Threads . 470
Single-Stepping GPU Code . 472
Halting a Running Application . 473

Displaying ROCm Program Elements . 473
GPU Variable and Data Display . 473
ROCm Built-In Runtime Variables . 476

GPU Error Reporting . 477

 AMD ROCm Problems and Limitations . 478

Hangs or Initialization Failures . 479

AMD GPU Debugging and ReplayEngine . 480

 Sample HIP Program. 481

Part 6: Memory Debugging . 485

About TotalView Memory Debugging

Debugging Memory in TotalView . 487

About Program Memory. 488

How TotalView Intercepts Memory Data . 492

Your Program’s Data . 494
The Data Section . 494
The Stack . 494
The Heap . 499

Finding Heap Allocation Problems . 499
Finding Heap Deallocation Problems. 499
realloc() Problems . 500
Memory Leaks . 500

xv

Contents

Running a Memory Debugging Session

Starting Memory Debugging in TotalView . 503

Memory Leak Detection . 505
Using the Leak Report . 506

Updating the Leak Report . 508
MPI Programs and Leak Reports . 508

Memory Heap Reports . 511
Using the Heap Report . 512

Updating the Heap Report . 513

Corrupt Guard Block Reports . 514

Memory Event Reports . 517
The Memory Event Report View . 518

Memory Block Notification . 521

Memory Debugging Options . 523
Option: Painting Memory . 524

Enabling and Configuring Painting . 525
Example: Viewing Painted Memory . 526

Option: Hoarding Memory Blocks . 526
Enabling and Configuring Hoarded Memory . 528
Example: Hoarding Memory. 529

Option: Guarding Allocated Memory . 529
Enabling and Configuring Guard Blocks . 530
Example: Viewing a Guard Corruption Event Report . 530

Dangling Pointer Problems . 534
Dangling Pointers in the Local Variables and Data Views. 534

Memory Scripting
display_specifiers Command-Line Option . 536
event_action Command-Line Option . 537
Other Command Line Options . 538
memscript Example . 539

Preparing Programs for Memory Debugging

Compiling Programs for Memory Debugging . 541

Linking Your Application with the HIA . 542

Using env to Insert the HIA. 545

Installing tvheap_mr.a on AIX . 547
LIBPATH and Linking . 547

Using TotalView in Selected Environments. 549

xvi

Contents

MPICH . 549
IBM PE . 549
Mac OS . 550

Background . 550
Calls to system() on Mac OS . 550
Setting the Environment Variable TV_MACOS_SYSTEM . 550

Linux . 551
dlopen and RTLD_DEEPBIND . 551

Part 7: Appendices . 554

Appendix A More on Expressions. 555

Calling Functions: Problems and Issues. 556

Using Built-in Variables and Statements . 557
Using TotalView Variables . 557
Using Built-In Statements. 558

Using Programming Language Elements . 560
Using C and C++ . 560
Using Fortran . 561

Fortran Statements. 561
Fortran Intrinsics. 562

Appendix B Compiling for Debugging . 564

Compiling with Debugging Symbols . 565

Maintaining Debug Information Separate from an Executable 567
Controlling Separate Debug Files. 568
Searching for the Debug Files. 569

Appendix C Platform-Specific Topics . 570

Swap Space. 571
Shared Libraries . 571

Changing Linkage Table Entries and LD_BIND_NOW . 572
Linking with the dbfork Library . 573

Linux or Mac OS X . 573

Appendix D Resources . 574

Classic TotalView Documentation . 575

Conventions . 576

Contacting Us . 577

xvii

Contents

Appendix E Open Source Software Notice . 578

Compiling with Debugging Symbols . 579

Maintaining Debug Information Separate from an Executable 581
Controlling Separate Debug Files. 582
Searching for the Debug Files. 583

Appendix F TotalView Glossary . 584

Index . 591

 1

PART I An Introduction to
TotalView

 Getting Started on page 2

An introduction to the primary features and interface of TotalView.

 Creating and Managing Sessions on page 23

How to create a new session or load a previous session.

 Basic Debugging on page 53

A tutorial based on a shipped example that illustrates basic debugging tasks.

 Program Navigation on page 74

Finding, searching, and navigation

2

 Getting Started

 Introducing TotalView on page 3

 An Initial Look at the Interface on page 4

 Starting TotalView and Creating a Debugging Session on page 18

Introducing TotalView 3

Getting Started

Introducing TotalView
TotalView features the next generation user interface of its debugger, supported on multiple platforms (See
TotalView Supported Platforms for specifics.)

TotalView's new user interface continues to incorporate new features and functionality from the classic version of
the UI in each release. See the release notes for detail. All TotalView functionality is fully available through the
Command Line Interface (CLI) even if a feature has not yet been added to the new UI.

NOTE: For overviews, tutorials, and whitepapers on using the various features of TotalView, see the
TotalView website.

TotalView incorporates ReplayEngine technology. With this feature engaged, you can go backwards in the debug-
ging session to find, for example, where an obviously incorrect variable value went wrong.

TotalView supports C++11 features for the GNU compiler, including support for lambdas, transformations for
smart pointers, auto types, R-Value references, range-based loops, strongly-typed enums, initializer lists, user
defined literals, and transformations for many of the containers such as array, forward_list, tuple and others.

Each new release will include additional functionality based on a priority list that you can help influence. Please
send email to tv-beta@perforce.com with your feedback and feature priorities.

UI Preferences

For new TotalView users, this UI is the default. To launch the classic UI if necessary:

 To change the default:

Change the default Display preference under File > Preferences > Display, or

 To launch the classic UI for a single instance of TotalView:

Add the -classicUI switch after the totalview command, for example:
totalview -classicUI

For information on contacting Perforce, conventions used in the documentation, and documentation for the
Classic UI, see Appendix D, Resources, on page 574.

https://totalview.io/resources
mailto:tv-beta@perforce.com

An Initial Look at the Interface Customizing the Interface 4

Getting Started

An Initial Look at the Interface
Starting TotalView without arguments launches the main screen:

Figure 1, The Initial Interface

Customizing the Interface

Preferences

The Settings toolbar , when selected, displays the Preferences dialog. You can also select File | Preferences.
For detail, see Preferences on page 266.

An Initial Look at the Interface Customizing the Interface 5

Getting Started

Resizing

To resize windows, hover your cursor over any dark dividing line between sections to display a two-way arrow that
moves that boundary either up and down, or left and right.

Drawers

Within certain views, you can display or hide a drawer, indicated by a dark gray banner that turns lighter gray at
cursor hover. Double-click to close the drawer so only the banner is displayed; double-click again to re-open it.
Click and drag the banner to move the banner up or down to resize the areas within the view.

Undocking and Docking

All views can be undocked into a separate, floating window by clicking on the top banner, dragging it a short dis-
tance, and releasing the mouse button. To dock the view elsewhere, click again and drag it to another location,
wait for a blank area to display, then release the mouse button.

Drawer Open Drawer Closed

An Initial Look at the Interface A Tour of the Interface 6

Getting Started

Figure 2, Docking a View in a New Location

To return a floating window to its default position, double-click on its banner or click the reattach icon in the
top-right corner next to the close (x) icon.

If you close the view, you can restore it using the Window | Views menu, or the context menu available by right-
clicking in the toolbar area.

A Tour of the Interface
Here we introduce the main views that make up the interface. If a view is not visible, restore it through the Prefer-
ences dialog, the Window | Views menu, or the context menu available by right-clicking in the toolbar area.

Central Area

When you first start up TotalView, the central area contains either just the Start Page, or the Start Page and a
Source view if you started TotalView with an executable name argument. This area is reserved for displaying the
Start Page, Source views of code, the Help view, and other debug status and data specific views associated with
your debugging session.

Central area views cannot be re-docked into the side or bottom secondary view areas, but they can be re-docked
within the central area to create their own optimal debugging layout, such as a side-by-side layout.

An Initial Look at the Interface A Tour of the Interface 7

Getting Started

Figure 3, Source View and Start Page in the central area

The Source View

Viewing the Program Counter

 In normal debugging mode, the diamond cursor and yellow highlighting identify the Program
Counter (PC), i.e. the code location of the debugger. Clicking another line result in a blue highlight,
indicating the target line if you use the Run To command. (There is no guarantee that the thread of
focus will arrive at that line, of course, if it hits a breakpoint first, or never executes the line.)

 In Replay mode, orange highlighting replaces yellow to identify where ReplayEngine is within the
code. The red triangle shows the “Live” location, i.e., the last line executed. Once the PC hits the live
location, it shifts from replay mode back to record mode.

An Initial Look at the Interface A Tour of the Interface 8

Getting Started

Source view actions

 Create breakpoints by clicking on bold line numbers in the gutter.

 See variable information by hovering over a variable name.

 See function information by hovering over function names.

 Search for text strings with the Find function.

If you highlight the function name and select “Navigate to File or Function” from the context menu, TotalView
finds and displays the source for the function, if the source is available. If there is more than one source loca-
tion, displays the function name as a search in the Lookup view.

Unified Source View Display

The Source view provides a unified view of source-line breakpoints across all image files containing the source file,
useful for programs in which the same source file or header file is compiled into multiple image files (e.g., execut-
able and shared library files) used by the process.

Line numbers appear bold where TotalView has identified executable code, i.e., source code lines where the com-
piler has generated one or more line number symbols in the debug information.

For example, consider debugging a program that launches CUDA code running on a Graphics Processing Unit
(GPU). When the host program is first loaded into TotalView, the CUDA threads have not yet launched, so the
debugger has no symbol table information yet. Figure 4 shows the Source view before and after a CUDA kernel
launch. Before the CUDA threads exist (the left pane), only line 134 has been identified as having executable
code.

An Initial Look at the Interface A Tour of the Interface 9

Getting Started

Figure 4, Unified Source view display

Once the program is running and the CUDA threads have started (the right pane), lines 126, 130, 132, 133, and
134 are bold, so now TotalView has been able to identify line number symbols at those locations.

Toolbars

The UI has the following toolbars:

Figure 5, TotalView Toolbars

NOTE: The ReplayEngine toolbar appears only on the supported platform Linux x86-64.

In the Settings (middle item), you can control which toolbars are displayed, and request that the toolbar items
include descriptive text:

RELATED TOPICS
Using the Source view to set action points
(breakpoints)

Breakpoints on page 85

Source views and their relationship to data display The Processes and Threads View in Relation to Other
Views on page 210

An Initial Look at the Interface A Tour of the Interface 10

Getting Started

Another set of toolbars to support CUDA debugging is available when a CUDA program is being run. While you
can display these at any time, they are responsive only when TotalView is debugging a CUDA program. See CUDA
Debugging Tutorial.

Processes and Threads View

Once a program is running, the Processes and Threads view displays information about all of the processes and
threads running in your program. The attributes list at the bottom lets you choose which information to display,
and in what order. By manipulating these attributes you can create various views into your program.

One line is bold, indicating the process and thread that currently has the focus. You can double-click on a differ-
ent line to change the focus to that process and thread. The thread of focus determines the data displayed in the
Call Stack and Data View.

RELATED TOPICS
About the debugging commands Debugging Commands on page 20

About the ReplayEngine commands Replaying Your Program in the ReplayEngine User Guide

Controlling the scope of debugging commands Stepping and Program Execution on page 367

An Initial Look at the Interface A Tour of the Interface 11

Getting Started

Figure 6, Processes and Threads View

RELATED TOPICS
Detailed information on this view The Processes and Threads View on page 203

The thread/process of focus and its effect on
the display of data

The Processes and Threads View in Relation to Other Views
on page 210

An Initial Look at the Interface A Tour of the Interface 12

Getting Started

Call Stack View and Local Variables View

The display in the Call Stack view depends on which thread has the focus. That thread is highlighted in bold in the
Processes and Threads view. You can double-click on a different line in the Processes and Threads view to change
the focus to another thread.

The Call Stack view shows the stack trace for the thread in focus, allowing you to trace back through the execu-
tion of the thread. If the left column shows a language, source code is available and clicking on that stack entry
displays the source code in a Source view at the location of the named function. if no language is shown, clicking
on the stack entry still displays a Source view, but it simply says “No Source Available”.

The Local Variables view displays variables associated with the selected frame.

Figure 7, Call Stack View with Local Variables View

RELATED TOPICS
Detailed information on this view The Call Stack, Local Variables, and Registers Views on

page 147

An Initial Look at the Interface A Tour of the Interface 13

Getting Started

Data View

The Data View allows you to keep track of specific variables as you move around your program, and to manipulate
the data in those variables in a number of ways. You add variables to the Data View by selecting them in the Local
Variables view and either dragging them into the Data View, or right-clicking and selecting Add to Data View from
the context menu.

Once data is in the Data View, you can do a number of things:

 Dereference pointers to access the data they point to

 Recast data to see different views of it, such as recasting pointers to the first value in an array into
the actual array so you can see the contained values

 Changing data values to see the effect on the program, which you can also do in the Local Variables
view.

Figure 8, The Data View

Lookup View

If your program is large and complex, finding functions or files can be challenging. The Lookup view allows you to
search using any substring. Suppose you suspect a problem with the expression function. In Figure 9, the
string “ex” returns a number of file and function names, including the expression function. Clicking on the func-
tion name displays it in a Source view, with the desired function centered in the view.

RELATED TOPICS
Examining, manipulating, and editing data The Data View on page 161

An Initial Look at the Interface A Tour of the Interface 14

Getting Started

Figure 9, Lookup View

Action Points, CLI, and Logger Views

The lower display area features a number of views.

Action Points View. This view lists all of the action points — breakpoints, evalpoints, and barrierpoints — in your
debugging session. You can add, delete, enable, and disable actions points in this view.

Command Line View. Although not yet fully supported in the UI, the full power of the Classic TotalView debug-
ging engine is available through the Command Line Interface (CLI). You can enter those commands in this view.

Logger. This view makes it easy to see the log messages that TotalView issues.

Note that the Command Line and Logger views allow text selection, cutting, and pasting of their contents.

RELATED TOPICS
Detailed information on this view The Lookup File or Function View on page 78

An Initial Look at the Interface A Tour of the Interface 15

Getting Started

Figure 10, Action Point, Command Line, and Logger Views

Input/Output View

The Input/Output view accepts user input and displays program output. This view is closed by default, but is
available if your program requires user input or you want to enter or view program output in the UI, rather than
in the terminal. You can also switch between the UI and the terminal; all input and output is reflected both in the
UI and the terminal.

RELATED TOPICS
Detailed information about the Action Points view Setting and Managing Action Points (Breakpoints) on page

82

More information about the Command Line view Access to the CLI on page 232

An Initial Look at the Interface A Tour of the Interface 16

Getting Started

To open it, select Window > Views > Input/Output.

Input displays in green text, while output displays in blue text. Errors display in red.

Help

One view that shows up in the main display area is the Help window. This can of course be displayed by selecting
various items on the Help menu, such as Contents.

Context-sensitive information about parts of the interface can be obtained by placing the cursor over the area
you are interested in and pressing F1. Information about that area appears in the Help window, or sometimes
help about a parent container shows up, which usually contains the information you are seeking.

An Initial Look at the Interface A Tour of the Interface 17

Getting Started

Figure 11, Obtaining Context-Sensitive Help

In Figure 11, F1 was pressed with the cursor over the ReplayEngine toolbar.

The information displayed for context sensitive help is from the full product documentation for TotalView. If you
move the Help into a separate window and increase its size, at some point navigation for the full product docu-
mentation appears.

An Initial Look at the Interface A Tour of the Interface 18

Getting Started

Figure 12, The Help Window with Full Product Documentation

Starting TotalView and Creating a Debugging Session A Tour of the Interface 19

Getting Started

Starting TotalView and Creating a Debugging
Session
Start TotalView in two primary ways: with no arguments to launch the Start Page, or with arguments to skip the
Start Page and open the UI with the program loaded and ready to debug.

The Start Page

If you start TotalView without arguments, the UI displays the Start Page, from which you can access the Sessions
Editor. This is the easiest way to load a program into TotalView. Once you configure a debugging session using the
Sessions Editor, the settings are saved under Recent Sessions so you can access them later.

Figure 13, Starting TotalView at the Start Page

From this page you can:

 Specify a program to debug — Debug a Program

 Specify a parallel program to debug — Debug a Parallel Program

Starting TotalView and Creating a Debugging Session A Tour of the Interface 20

Getting Started

 Start debugging a running program — Attach to Process

 Specify a core file to debug, or a ReplayEngine recording file to load — Load Core or Replay
Recording File

 Restart a previously defined session — tx_fork_loop

Loading a program directly into TotalView

Load a program into TotalView by entering:

totalview executable_name [argument argument ...]

where executable_name is the executable of the program you want to debug, followed by any arguments the
program takes. This opens the TotalView UI with the program loaded and ready to debug.

Figure 14 shows the Source view for the program and the Processes and Threads view. These are just two of sev-
eral available views.

NOTE: To run a program in TotalView, compile it for debugging, usually with the -g command-line
option, depending on your compiler.

Starting TotalView and Creating a Debugging Session Debugging Commands 21

Getting Started

Figure 14, Starting TotalView with an Executable Name

Debugging Commands
The table below summarizes the behavior of the debugging commands available in TotalView. The descriptions
assume that the command is being applied to a single thread, the thread with the focus. In fact, debugging com-
mands are much more flexible than this. They can apply to threads, processes, or groups, or some collection of
these. You select the different scopes for debugging commands from the menu on the left of the toolbar, or by
selecting the commands from the Thread, Process, and Group menus.

See Related Topics below for the location of discussions about these extended capabilities.

RELATED TOPICS
Defining, Editing, and Managing Sessions Creating and Managing Sessions on page 23

More on compiling programs for debugging Appendix B, Compiling for Debugging, on page 564

More on starting TotalView Starting a Session from your Shell on page 50

Starting TotalView and Creating a Debugging Session Diving on Program Elements 22

Getting Started

Diving on Program Elements
Diving is integral to the TotalView UI and provides a quick, intuitive, and effective way to get more information
about various program elements. Dive on an element either by just double-clicking on it or via a context menu,
depending on the element. For example:

Command Description

Go Sets the thread to running until it reaches a stopping point. Often this will be a breakpoint
that you have set, but the thread could stop for other reasons.

Halt Stops the thread at its current execution point.

Kill Stops program execution. Existing breakpoints and other settings remain in effect.

Restart Stops program execution and restarts the program from the beginning. Existing break-
points and other settings remain in effect. This is the same as clicking Kill followed by Go.

Next Moves the thread to the next line of execution. If the line the thread was on includes one or
more function calls, TotalView does not step into these functions but just executes them
and returns.

Step Like Next, except that TotalView does step into any function calls, so the thread stops at the
first line of execution of the first function call.

Out If the thread is in a block of execution, runs the thread to the first line of execution beyond
that block.

Run To If there is a code line selected in one of the Source views, the thread will stop at this line,
assuming of course that it ever makes it there. This operates like a one-time, temporary
breakpoint.

RELATED TOPICS
Controlling the scope (width) of debugging commands Stepping and Program Execution on page 367

Controlling what happens when a thread reaches a
breakpoint (action point)

Controlling an Action Point’s Width on page 124

Seeing the debugging commands in action Stepping and Executing on page 59

Starting TotalView and Creating a Debugging Session Diving on Program Elements 23

Getting Started

 Dive on a thread or function in the Processes & Threads view, (by double clicking on it), and the
Source view switches its focus to that element.

 Navigate to a function in the Source pane to move its focus to that element.

 Dive on an expression or variable in the Data View to add it as a new expression in the Data View.
This is helpful for examining one segment of a data structure or element of an array of data. See
Diving on Variables on page 167.

23

Creating and Managing Sessions

There are two primary ways to load programs into TotalView for debugging: the UI via the Start Page (Loading
Programs from the Session Editor) or with CLI commands (Loading Programs Using the CLI). Both support
all debugging session types.

There are also ways to start TotalView with arguments that set up a session when the program opens (Start-
ing a Session from your Shell).

Setting up Debugging Sessions

 Loading Programs from the Session Editor on page 25

 Starting a Debugging Session on page 26

 Debug a Program on page 28

 Debug a Parallel Program on page 29

 Attach to Process on page 32

 Debug a Core or Replay Recording File on page 36

 Load a Recent Session on page 38

 Editing a Previous Session on page 38

 Loading Programs Using the CLI on page 38

Additional Session Setup Options

 Program Environment on page 41

 Standard Input and Output on page 42

Managing Debug Sessions

 Managing Sessions on page 46

 24

Creating and Managing Sessions

Starting TotalView with a Session Initiated

 Starting a Session from your Shell on page 50

Setting up Debugging Sessions Loading Programs from the Session Editor 25

Creating and Managing Sessions

Setting up Debugging Sessions
The easiest way to set up a new debugging session is to use the Session Editor, an easy-to-use interface for con-
figuring sessions and loading programs into TotalView. Alternatively, you can use the CLI.

 Loading Programs from the Session Editor on page 25

 Loading Programs Using the CLI on page 38

Loading Programs from the Session Editor
TotalView can debug programs on local and remote hosts, and programs accessed over networks and serial lines.
Use the Session Editor to configure a new debugging session or to access a previous session. Access the Session
Editor via either the Start Page or the File menu. The Start Page provides access to all types of debug sessions
(Starting a Debugging Session on page 26), while the File menu enables you to choose a specific debugging ses-
sion, such as loading local and remote programs, core files, and processes that are already running.

Figure 15, Choosing a Specific Debug Session from the File Menu

Setting up Debugging Sessions Loading Programs from the Session Editor 26

Creating and Managing Sessions

Figure 16, Opening the Sessions Editor from the Window Menu

If you are just starting TotalView, the Start Page automatically opens.

Starting a Debugging Session

Access the Start Page either directly from your shell by just entering
totalview

or by selecting Window > Start Page from within the UI if TotalView is already running.

Setting up Debugging Sessions Loading Programs from the Session Editor 27

Creating and Managing Sessions

Figure 17, Start Page Opening View

From this initial window, you can configure various types of debugging sessions:

 Debug a Program on page 28

 Attach to Process on page 32

 Debug a Parallel Program on page 29

 Debug a Core or Replay Recording File on page 36

 Load a Recent Session on page 38

You can also control whether TotalView listens for reverse connections. (Reverse Connections on page 256) or
launches a remote debugger (About Remote Connections on page 391).

Setting up Debugging Sessions Loading Programs from the Session Editor 28

Creating and Managing Sessions

Debug a Program

To configure a new debugging session, select Debug a Program to launch the Program Session dialog.

Figure 18, Program Session dialog

1. Enter a session name in the Session Name text box.

Note that any previously entered sessions of the same type are available from the Session Name dropdown
box. See Editing a Previous Session on page 38.

2. Enter the name of your program in the File Name box or press Browse to browse to and select the file.
You can enter a full or relative path name. If you have previously entered programs here, they will appear in
a dropdown list.

If you enter a file name and the UI cannot find it, it displays the path in red; however, TotalView searches for
it in the list of directories listed in your PATH environment variable.

3. (Optional) Add any custom configurations or options:

CLI: dset EXECUTABLE_PATH

Setting up Debugging Sessions Loading Programs from the Session Editor 29

Creating and Managing Sessions

 Program arguments: Enter any program arguments into the Arguments field.

Because you are loading the program from within TotalView, you need to enter the command-line
arguments that the program requires.

 Debug Options:

For detail, see Debug Options on page 40.

 Program Environment:

Working Directory on page 41.

Environment Variables for the Program on page 41.

 Standard Input and Output: See Standard Input and Output on page 42.

4. Click Load Session. The Load Session button is enabled once all required information is entered.

Debug a Parallel Program

TotalView supports the popular parallel execution models including MPI, OpenMP, SGI shared memory (shmem),
Global Arrays, UPC, CAF, fork/exec, and pthreads.

Starting an MPI Program

MPI programs use a starter program such as mpirun to start your program. You can start these MPI programs in
two ways:

 With the starter program under TotalView control. In this case, enter the name of the starter
program on the command line.

 Using the UI, in which case the starter program is not under TotalView control. In this scenario,
enter program information into the Parallel Session Dialog from within the Session Editor.

Programs started using the UI have some limitations: program launch does not use the information you set for
single-process and bulk server launching, and you cannot use the Attach Subset command.

Starting MPI programs using the Session Editor is described here. For examples using a starter program, see
Starting a Session from your Shell.

Setting up Debugging Sessions Loading Programs from the Session Editor 30

Creating and Managing Sessions

Parallel Session Dialog

From the Start Page, select Debug a Parallel Program to launch the Parallel Session dialog.

1. Session and Program Details

Figure 19, Parallel Session: Session and Program Details

Session Details: Enter a session name in the Session Name field.

NOTE: Any previously entered sessions of the same type are available from the Session
Name dropdown box. Once selected, you can change any session properties and
start your debug session. See Editing a Previous Session on page 38

Program Details

 File Name: Enter the name of your program or press Browse to browse to and select the file.
You can enter a full or relative path name. If you have previously entered programs here, they
will appear in a dropdown list.

Setting up Debugging Sessions Loading Programs from the Session Editor 31

Creating and Managing Sessions

If you enter a file name and the UI cannot find it, it displays the path in red; however, TotalView
searches for it in the list of directories listed in your PATH environment variable. See Search Path on
page 272.

 Arguments: Enter any arguments to be sent to your program.

Because you are loading the program from within the UI, you need to enter the command-line argu-
ments that the program requires.

2. Parallel Details

Figure 20, Parallel Session: Parallel Details

 Parallel System: Select which parallel system profile TotalView should use when starting
your program. This profile can be one that TotalView provides, one created for your site, or
one that you create. (For information, see MPI Startup Customizations on page 319.)

 Tasks: Enter a number indicating how many tasks your program should create.

If your system has a default value and you want to use it, enter a value of 0 (zero).

If your system has no default value or you want to override the default, enter a value of 1 or greater.

 Nodes: (System-dependent) Enter a number indicating how many nodes your program
should use when running your program. (Not all systems use this value, so this field may not
be visible.)

 Additional Starter Arguments: If your program’s execution requires that you use argu-
ments to send information to the starter process such as mpirun or poe, enter them in this
field. (In contrast, if you need to use arguments to send information to your program, enter
those arguments in the Arguments field under Program Details.)

CLI: dset EXECUTABLE_PATH

Setting up Debugging Sessions Loading Programs from the Session Editor 32

Creating and Managing Sessions

3. Debug Options: See Debug Options on page 40.

4. Program Environment: See Program Environment on page 41.

5. Standard Output/Error Redirection: See Standard Input and Output on page 42.

6. Standard Input Redirection: See Standard Input and Output on page 42.

7. Select the Load Session button to launch the debugger.

NOTE: Note that any errors in the parallel configuration will launch an error pop-up:

If you continue with the session, additional errors launch, and your session may not run correctly.

Once created, a session named my_foo can be quickly launched later using the -load command line option, like
so:
totalview -newui -load_session my_foo

Attach to Process

If a program you’re testing is hung or looping (or misbehaving in some other way), you can attach to it while it is
running.

RELATED TOPICS
Set up MPI debugging sessions for various environ-
ments and special use cases

MPI Program Setup on page 302

Set up non-MPI parallel debugging sessions for applica-
tions that use the parallel execution models that
TotalView supports

Non-MPI Program Setup on page 289

Create MPI startup profiles for environments that
TotalView doesn't define

MPI Startup Customizations on page 319

Tips for debugging parallel applications Debugging Strategies for Parallel Applications” in the
Classic TotalView User Guide

Setting up Debugging Sessions Loading Programs from the Session Editor 33

Creating and Managing Sessions

To open the Attach window, select Attach to Process on the Start Page.

A list of processes running on the local host displays in the Attach to running program(s) dialog.

Figure 21, Attach to a running program

In the displayed list, processes to which TotalView can attach are displayed in black text, while those to which
TotalView has already attached or are not attachable for any reason are grayed out.

1. Enter a name for this session in the Session Name field.

Any previously entered sessions of the same type are available from the Session Name dropdown box. Once
selected, you can change any session properties and start your debug session. See Editing a Previous Ses-
sion on page 38.

2. Select the process under the Program column. For a single selected process, the PID and File Name fields
are auto-populated. Alternatively, use these fields to specifically identify a process to attach to.

To select multiple processes, hold down the Ctrl key and select them. (In this case, the PID and File Name
fields are not used.)

Setting up Debugging Sessions Loading Programs from the Session Editor 34

Creating and Managing Sessions

3. Press Attach.

While you must link programs that use fork() and execve()with the TotalView dbfork library so that TotalView can
automatically attach to them when your program creates them, programs that you attach to need not be linked
with this library.

Field Definitions

The Processes section displays these fields:

 Program: The name of the executing program. Notice that TotalView indents some names. This
indentation indicates the parent/child relationship within the UNIX process hierarchy.

 State: A letter indicating the program’s state, as follows:

 Host: The name of the machine upon which the program is executing

 PID: The operating system program ID

 PPID: The parent program’s ID

CLI: dattach executable pid

RELATED TOPICS
The CLI dattach command dattach in the TotalView Reference Guide

The CLI ddetach command ddetach in the TotalView Reference Guide

Character and Meaning Definition

I (Idle) Process has been idle or sleeping for more than 20 seconds.

R (Running) Process is running or can run.

S (Sleeping) Process has been idle or sleeping for less than 20 seconds.

T (Stopped) Process is stopped.

Z (Zombie) Process is a “zombie”; that is, it is a child process that has termi-
nated and is waiting for its parent process to gather its status.

Setting up Debugging Sessions Loading Programs from the Session Editor 35

Creating and Managing Sessions

 Path: The program’s path on the local machine, that is, the machine where TotalView is running.

If you attach to multiple processes, TotalView places all of them into the same control group, enabling you to stop
and start them as a group.

Searching for Processes

Search for any process using the search box ().

If found, the process displays in the Processes pane.

In some cases, the name provided to TotalView by your operating system may not be the actual name of the pro-
gram. In this case, you will not be able to simply select the name. Instead, you should

 Determine what its actual name is by using a command such as ls in a shell window.

 Select the name as this will fill in much of the program’s name.

 Move to the File Name control, and type its actual name, then press Enter.

If you wish to attach to a multiprocess program, you can either select multiple processes here, or you can restart
the program under TotalView control so that the processes are automatically picked up as they are forked. In
most cases, this requires you to link your program with the dbfork library, as discussed in the section Linking
with the dbfork Library on page 573.

If the process you are attaching to is one member of a collection of related processes created with fork() calls,
TotalView asks if you want to also attach to all of its relatives. If you answer yes, TotalView attaches to all the pro-
cess’s ancestors, descendants, and cousins.

NOTE: If some of the processes in the collection have called exec(), TotalView tries to determine the
new executable file for the process. If TotalView appears to read the wrong file, you should
start over, compile the program using the dbfork library, and start the program under
TotalView control.

Setting up Debugging Sessions Loading Programs from the Session Editor 36

Creating and Managing Sessions

Debug Options

NOTE: Debug options are platform-specific, so your system may or may not include the options dis-
cussed in this section.

In the Debug Options section, you can enable ReplayEngine. (See Reverse Debugging.)

Debug a Core or Replay Recording File

To configure a core file or Replay Recording debug session, select Load Core or Replay Recording File from the
Start Page. The “Core or Replay Recording Session” dialog launches.

1. Enter a name for the session in the Session Name field.

2. Select the core or Replay recording file to debug.

Use the Browse button to search the file system for the file.

3. Select the related program in the File Name field under the Program Details section.

4. Click Load Session.

Setting up Debugging Sessions Loading Programs from the Session Editor 37

Creating and Managing Sessions

Figure 22, Open a Core File

If your operating system can create multi-threaded core files (and most can), TotalView can examine the thread in
which the problem occurred. It can also show you information about other threads in your program.

Similarly, TotalView can load previously saved replay recording session files to further debug applications.

When TotalView loads the core or replay recording session, it displays the core file/replay recording file, showing
the state of the program. The status ribbon at the bottom of the window displays either the signal that caused
the core dump, or “Recording File.” The yellow arrow and highlight in the Source Pane indicate the location of the
program counter (PC) when the process encountered the error.

If you start a process while you’re examining a core file, TotalView stops using the core file and switches to this
new process.

RELATED TOPICS
The CLI dattach command’s -c corefile-name |
replayrecordingsessionfile option

dattach in the TotalView Reference Guide

Setting up Debugging Sessions Loading Programs Using the CLI 38

Creating and Managing Sessions

Load a Recent Session

The Session Editor displays your most recent sessions on the Start Page so you can quickly continue a debugging
session where you left off.

Figure 23, Start a Previous Debugging Session

Click on a session to immediately load your previous session into TotalView.

To edit a previous session before loading it, see Editing a Previous Session.

Editing a Previous Session

The Session Name field on each sessions window contains a dropdown that lists all previously created sessions
of this type.

Figure 24, Sessions Name dropdown of a Program Session window

To edit a previous session, either select the previous session, or click the Pencil icon to open the Session Editor
populated with session data. You can edit any session data, including the Session Name to create an entirely new
session.

Loading Programs Using the CLI
When using the CLI, you can load programs in a number of ways. Here are a few examples.

Load a session

dsession -load session-name

Setting up Debugging Sessions Loading Programs Using the CLI 39

Creating and Managing Sessions

Loads the session directly into TotalView.

Start a new process

dload -e executable
Open a core file

dattach -c corefile -e executable

If TotalView is not yet running, you can also provide the core file as a startup argument, like so:

totalview executable corefile [options]
Open a replay recording session file

dattach -c replay-recording -e executable

If TotalView is not yet running, you can also provide the replay recording file as a startup argument, like so:

totalview executablereplay-recording-file[options]
Attach to a program using its process ID

dattach executable pid
Load an MPI job using the POE configuration and the hfiles starter argument. In this example, two pro-
cesses will be used across nodes.

dload -mpi POE -np 2 -nodes -starter_args "hfile=~/my_hosts"

RELATED TOPICS
CLI commands "CLI Commands" in the TotalView Reference Guide

Loading sessions from the command line Starting a Session from your Shell on page 50

Options and Program Arguments Debug Options 40

Creating and Managing Sessions

Options and Program Arguments
The Session Editor supports setting options and program arguments either when first setting up a session or
during a running session. These settings include:

 Debug Options

 Program Environment

 Standard input or output settings

See Modifying Arguments in an Open Session on page 43 for how to set options during an existing session.

Debug Options
Debug program options, including for parallel programs, include:

Reverse Debugging

Reverse debugging records all program state while the program is running, then allows you to roll back your pro-
gram to any point.

The reverse debugging check box is visible only on Linux-x86-64 platforms. If you do not have a license for
ReplayEngine, enabling the check box has no effect, and TotalView displays an error message when your program
begins executing. Selecting this check box tells TotalView that it should instrument your code so that you can
move back to previously executed lines.

See the ReplayEngine User Guide.

Python debugging

The Python language is easily extensible with C and C++ code. This enables Python applications to access legacy
algorithms, specialized hardware, and to perform highly specialized computing. TotalView supports debugging
Python extensions, shows a clean set of stack frames across the language barriers, and allows both Python and
C/C++ variables to be examined and compared.

Python debugging is supported only on Linux-x86-64 platforms.

See Starting a Python Debugging Session on page 221.

Memory debugging

Locate many of your program’s memory problems, including leak detection, heap and event reports, and the abil-
ity to identify dangling pointers.

Options and Program Arguments Program Environment 41

Creating and Managing Sessions

See Starting Memory Debugging in TotalView on page 503.

CUDA debugging

Detect global memory addressing violations and misaligned global memory accesses by enabling the CUDA Mem-
ory Checker feature.

See Enabling CUDA Memory Checker Feature on page 449.

Program Environment
Control the program environment by changing the working directory or setting environment variables.

Working Directory

The working directory option specifies a working directory for executing your target program. If not provided, the
default is the directory from which you invoked TotalView.

This value can be entered into the UI or on the command line when starting TotalView. It can then be modified
during a debug session using the Process > Modify Arguments menu.

Set or Modify the Working Directory in the UI

To set or modify the working directory in the Session Editor, enter the full path in the Working Directory field:

If the directory does not exist, “Directory not found locally” displays.

Set the Working Directory on the Command Line

When starting TotalView from a shell, set the working directory using the command line argument
-working_directory, like so:
totalview -working_directory /tmp

Environment Variables for the Program

When loading the program from within TotalView, add any necessary environment variables into the Environ-
ment variables for the program field.

Options and Program Arguments Standard Input and Output 42

Creating and Managing Sessions

Figure 25, Setting Environment Variables

Either separate each argument with a space, or place each one on a separate line. If an argument contains
spaces, enclose the entire argument in double-quotation marks.

At startup, TotalView reads in your environment variables to ensure that your program has access to them when
the program begins executing. Use this field to add additional environment variables or to override values of
existing variables.

TotalView does not display the variables that were passed to it when you started your debugging session. Instead,
this field displays only the variables you added using this command.

The format for specifying an environment variable is name=value. For example, the following definition creates
an environment variable named DISPLAY whose value is enterprise:0.0:
DISPLAY=enterprise:0.0

Standard Input and Output
Use the controls in the Standard Input Redirection and Standard Output/Error Redirection sections to alter
standard input, output, and error. In all cases, name the file to which TotalView will write or from which TotalView
will read information. Other controls append output to an existing file if one exists instead of overwriting it or
merge standard out and standard error to the same stream.

Options and Program Arguments Modifying Arguments in an Open Session 43

Creating and Managing Sessions

Figure 26, Debug Options for Standard Input

Modifying Arguments in an Open Session
All arguments or options that can be set while first configuring a session (see Options and Program Arguments)
and can also be modified once the session has started.

NOTE: You can modify arguments in existing sessions only when debugging a program. You cannot
modify arguments for existing sessions in which you have attached to a running process or are
debugging a core or replay recording file.

Modify arguments in an existing session using either the UI or when loading a program from the command line,
i.e. when entering totalview <program_name> into your shell. (See Starting a Session from your Shell on
page 50.)

To modify arguments in the UI:

1. From within a debugging session, choose the Process menu, and then Modify Arguments. Alternatively,
click the Modify Arguments () icon on the toolbar or press the shortcut key A.

Options and Program Arguments Modifying Arguments in an Open Session 44

Creating and Managing Sessions

Figure 27, Modify Arguments drop-down

The Session Editor launches.

Figure 28, Modifying Arguments in the Session Editor

2. Enter any modified arguments or options in either

 Reverse Debugging: Toggle this on or off.

 Arguments: Change any arguments to your program

Options and Program Arguments Modifying Arguments in an Open Session 45

Creating and Managing Sessions

 Environment variables: Enter or edit variables.

 Standard input: Enter or edit any input files.

NOTE: When modifying arguments within an open session, you cannot change the File
Name or the Session Name, both of which are disabled.

3. Click Apply on Restart.

Modified arguments have no effect until you restart your program, selecting either Go, Kill or Restart.

Managing Sessions Modifying Arguments in an Open Session 46

Creating and Managing Sessions

Managing Sessions
TotalView saves the settings for each of your previously-entered debugging sessions, available in the Manage
Debugging Sessions window of the Sessions Manager. Here, you can edit, duplicate or delete sessions as well as
start a session and create new sessions.

You can also edit and create new sessions from any Sessions Window. See Editing a Previous Session on
page 38.

Access the Manage Sessions window, either from the Start Page by clicking View All to see all your sessions, or
from File > Manage Sessions.

Figure 29, Accessing Manage Sessions from the Start Page

Figure 30, Accessing Manage Sessions from the File Menu

The Manage Sessions window launches listing all the sessions you have created.

Managing Sessions Modifying Arguments in an Open Session 47

Creating and Managing Sessions

Figure 31, The Manage Sessions window

Use the Manage Sessions window to:

 Display data about a session by selecting the session.

 Search for a session by entering a keyword in the search field.

Managing Sessions Modifying Arguments in an Open Session 48

Creating and Managing Sessions

 Rename a session by double-clicking on it and entering a new name.

 Load a session by clicking Load Session, which immediately opens that session in TotalView.

 Edit, delete and duplicate sessionsusing either the context-menu accessed by right-clicking on a
session or the icons in the top toolbar:

Managing Sessions Modifying Arguments in an Open Session 49

Creating and Managing Sessions

Table 1: Manage Sessions Icons

Icon Action

Creates a new debugging session, opening a drop-down menu for selecting:

 Create a new Program Session

 Set up an Attach Session

 Create a session to load a Core or Replay Recording File

Duplicates a session, naming it "<Session Name>Copy". You can rename and then edit this
session.

Edits a session, launching the appropriate window to change the session’s configuration,
either Program Session, Parallel Session, Attach to running programs, or Core or Replay
Recording Session.

Deletes a session.

Starting a Session from your Shell Debugging a Program 50

Creating and Managing Sessions

Starting a Session from your Shell
There are a number of ways to start TotalView so a session is created and ready to begin when the debugger
opens.

NOTE: If you need features currently not supported in the TotalView UI (see Introducing TotalView on
page 3), you can launch Classic TotalView by invoking totalview with the flag -classicui.
For example: totalview -classicui

Debugging a Program
totalview executable

Starts TotalView and loads the executable program.

Debugging a Parallel Program
totalview -args mpirun -np 4 ./mpi_program

Starts TotalView and loads a four-process MPI program.

Debugging a Core File
totalview executable corefile

Starts TotalView, loads the executable program, and an associated corefile. You can use wild cards in the core
file name.

Debugging a Replay Recording File
totalview executable replay-recording-file

Starts TotalView, loads the executable program, and the replay-recording-file from a previous debugging
session for which a ReplayEngine recording was saved to the named file.

Starting a Session from your Shell Passing Arguments to the Program Being Debugged 51

Creating and Managing Sessions

Passing Arguments to the Program Being Debugged
totalview executable -a args

Starts TotalView and passes all the arguments following the -a option to the executable program. When using
the -a option, it must be the last TotalView option on the command line. Delimit multiple arguments with spaces.

totalview -args executable args
Similar to above, but uses the command line option -args to specify that the executable program and argu-
ments follow.

Loading a Session
totalview -load_session session-name

Starts TotalView and the named session.

Starting TotalView on a Script
It is sometimes convenient to start TotalView on a shell script. For example, a typical use case might be a script
that calls into a shared library, and you need to debug the shared library code; another case is a shell script that
sets environment variables, then execs the application to debug.

Anywhere in the examples above that an executable can be specified, an interpreter script can be specified
instead. The underlying interpreter, which must be a valid executable object file for the platform, is debugged, not
the script itself.

On Unix, an interpreter script starts with a line that is similar to the following:
#! interpreter [interpreter-arg]
Where

 #! are the first two characters in the file.

 interpreter is the path to an executable object file or some other interpreter script.

 interpreter-arg is an optional argument to pass to the interpreter.

When the interpreter script is executed, the interpreter is invoked by the system as follows:
interpreter [interpreter-arg] script [script-args]
Here's a simple example:
% cat myscript.sh
 #! /bin/sh -x

RELATED TOPICS
Parallel preferences when debugging a parallel program Parallel Configuration on page 275

Starting a Session from your Shell Starting TotalView on a Script 52

Creating and Managing Sessions

echo "$@"
% ./myscript.sh a b c
+ echo a b c
a b c
%
In the example above, the following command was executed:
/bin/sh -x ./myscript.sh a b c
Whenever TotalView is processing an executable file, it first checks to see if the file is an interpreter script. If the
file starts with #!, it is treated as an interpreter script. The path to the interpreter is extracted from the script and
used as the executable object file to debug. If the interpreter file is itself an interpreter script, TotalView repeats
the procedure (up to 40 times) until it encounters an interpreter file that is not an interpreter script. If the proce-
dure fails to find a valid executable object file for the platform, loading the script into the debugger will fail.

In most cases, the interpreter for the script does not directly contain the code you want to debug, and instead
dynamically loads or executes the code to debug. TotalView contains several configuration settings that make it
easier to plant breakpoints and stop in your code, as described by the Related Topics below. There are three com-
mon cases, where the interpreter script:

 Dynamically loads a shared library and calls into the code to debug (see the entries below
regarding shared libraries and creating pending breakpoints)

 Execs the program containing the code to debug (relevant to exec handling)

 Runs the program containing the code to debug (relevant to fork handling)

RELATED TOPICS
Configuring dynamic library handling Shared Libraries on page 571

Creating a pending breakpoint Pending Breakpoints on page 89

Configuring exec handling Exec Handling on page 340

Configuring fork handling Fork Handling on page 340

53

 Basic Debugging

This chapter illustrates some basic debugging tasks and is based on the shipped program, expression,
located in the directory installdir/toolworks/totalview.version/platform/examples.

NOTE: We recommend that you follow the procedure in the README.TXT file in the examples
directory to create a local copy of the examples and rebuild them in your environment.

This program takes expressions input by the user and evaluates them. For the purposes of this example, we’ll
instead redirect the standard input to read a file, expr.tst, also located in the examples directory. This file
includes three simple expressions:

2+3
2*(4/5)
(1/2)-(3/4)
The first steps when debugging programs with TotalView are similar to those using other debuggers:

 Use the -g option to compile the program.

 Start the program under TotalView control.

 Start the debugging process, including setting breakpoints and examining your program’s data.

The chapter introduces some of TotalView’s primary tools, as follows:

 Program Load and Navigation on page 54

 Stepping and Executing on page 59

 Setting and Running to a Breakpoint (Action Point) on page 62

 Examining Data on page 66

Program Load and Navigation Load the Program to Debug 54

Basic Debugging

Program Load and Navigation
This section discusses how to load a program and looks at the primary TotalView interface. It also illustrates some
of TotalView’s navigation tools.

Load the Program to Debug
Before starting TotalView, you must add TotalView to your PATH variable. For information on installing or configur-
ing TotalView, see the Classic TotalView Installation Guide.

1. Start TotalView.
totalview
The Start Page launches.

Program Load and Navigation Load the Program to Debug 55

Basic Debugging

2. Select Debug a Program to open the Program Session window.

3. Provide a name for the session in Session Name field. This can be any string.

4. In the File Name field, browse to and select the expression program, located in the directory installdir/
toolworks/totalview.version/platform/examples.

5. In the Standard Input Redirection field, browse to and select the expr.tst file, also located in the exam-
ples directory. This provides the input required by the program. Leave all other fields and options as is.

6. Click Load Session to load the program into TotalView.

Note that this is the same as entering the path to the standard input file and program name as arguments when
starting TotalView:

totalview -stdin expr.tst expression
(This invocation assumes that your examples directory is known to TotalView or that you are invoking TotalView
from within the examples directory.)

RELATED TOPICS
Loading programs Loading Programs from the Session Editor on page 25

Program Load and Navigation Load the Program to Debug 56

Basic Debugging

Initial Display

At startup, TotalView displays your program’s code in the central area’s Source pane, along with its default views:
the Processes & Threads, Lookup File or Function, Action Points, Call Stack, Local Variables, Documents, and Data
View.

Figure 32, TotalView’s Default Views

 The Processes & Threads view lists all processes and threads under TotalView control. You can
use the Window > Views menu item to customize the displayed views.

Since the program has been created but not yet executed, there is no process or thread listed here.

Starting a session from your shell Starting a Session from your Shell on page 50

Modifying arguments in an existing
session

Modifying Arguments in an Open Session on page 43

RELATED TOPICS

Program Load and Navigation Load the Program to Debug 57

Basic Debugging

 The Lookup File or Function view takes any keyword search and returns a file or function from
within your program’s files.

 The Documents view displays all open files in the order in which their tabs appear in the central
area.

 The Replay Bookmarks view displays bookmarks created to mark a point in program execution
history.

 Action Points displays any breakpoints you set.

 The Call Stack view shows the backtrace of the thread that is currently in focus once the program
is running.

 The Local Variables view displays information on the current thread’s variables.

 The Source view in the central area displays your source code’s main() function before execution.

 Several views are also visible at the bottom: Data View, Command Line, and Logger.

 Data View enables you to evaluate expressions to observe your data while your program is
running.

 Command Line, which, when selected, displays a prompt for entering CLI commands:

 Logger which, when selected, displays logging output from TotalView:

Program Load and Navigation Program Navigation 58

Basic Debugging

 Optional: The Input/Output view displays stdout and stderr, and supports entering input
directly into the user interface rather than only through the terminal. This view is turned off
by default. To display it, select Window > Views > Input/Output.

Program Navigation
TotalView provides several ways to search your applications for text strings, files or functions. See Program Navi-
gation on page 74 for ways to navigate through your project.

RELATED TOPICS
Processes & Threads view Customize the Display on page 206

Call Stack panel The Call Stack, Local Variables, and Registers Views on page 147

Action Points Setting and Managing Action Points (Breakpoints) on page 82

The CLI Using the Command Line Interface (CLI) on page 231

Stepping and Executing Simple Stepping 59

Basic Debugging

Stepping and Executing
Here, we’ll step through the program, using the buttons on the Debug toolbar.

Figure 33, Debug toolbar

The following sections explore how these work using the expression example.

NOTE: These procedures on stepping and execution can be performed independently of the other
tasks in this chapter, but you must first load the program, as described in Load the Program to
Debug on page 54.

Simple Stepping
Here, we’ll use the commands Step, Run To, Next and Out, and then note process and thread status.

1. Step

 Select Step () in the toolbar. TotalView stops the program just before the first executable
statement, the call to setjmp().

Note the yellow highlight and arrow show the current location of the Program Counter, or PC, in the
Source pane.

Stepping and Executing Simple Stepping 60

Basic Debugging

The process and thread status are displayed in the Processes & Threads pane:

This program has just a single process 1 and thread, denoted by 1.1, which reports that its status is
Stopped in main(). The thread is in bold, because it is the active thread or the Thread of Interest (TOI).

The status bar at the bottom also displays process/thread status, reporting that the TOI is in main().

 Select Step again to advance to the while loop on line 31, and then select Step again to step
into the readexpr() function. (Next would step over, or execute it.)

Because the readexpr() function is in a different file, TotalView opens the readexpr.c file and
advances the PC to the first line of executable code in the readexpr() function.

Stepping and Executing Simple Stepping 61

Basic Debugging

Note that the readexpr() function now appears in the Call Stack view:

The status bar reports the location of the PC:

2. Run To

Select the return() statement at line 136, then click Run To () in the toolbar. The PC advances to line 136.
Blue highlighting denotes a “run to” location.

3. Out

Select Out () to execute the return statement and exit the function. The PC returns to the while condition
inside main():

4. Next

Click Next () on the toolbar. The Next command simply executes any executable code at the location of
the PC. If that is a function call, it fully executes the function. If the PC is instead at a location within a function,
it executes that line and then moves the PC to the next line.

In this case, the PC moves to the next executable line in main(), the assignment of the evaluate() function's
return value on line 32:

Now let’s add some breakpoints and rerun the program.

Setting and Running to a Breakpoint (Action Point) Set and Control Breakpoints 62

Basic Debugging

Setting and Running to a Breakpoint (Action
Point)
TotalView uses the term action point. A breakpoint is simply a type of action point that stops the execution of the
processes and threads that reach it.

This section uses the expression example to set breakpoints.

NOTE: These procedures on working with action points can be performed independently of the other
sections in this chapter (which starts at Basic Debugging on page 53), but you must first load
the program as described in Load the Program to Debug on page 54.

Set and Control Breakpoints
1. Set a breakpoint.

Navigate to the function readexpr() on line 31 to open the file readexpr.c.

Set a breakpoint on line 119 by clicking on the line number in the Source pane. You can also set a breakpoint
using the Action Points > Set Breakpoint menu item.

The breakpoint will stop the program after executing the expression() function and just before returning
the node object.

NOTE: Bold line numbers indicate known source locations. Breakpoints set on line num-
bers that are not bold are slid to the next valid source location and can become a
valid source location if code is later loaded for that line.

Setting and Running to a Breakpoint (Action Point) Set and Control Breakpoints 63

Basic Debugging

The line number turns red in the Source pane and the action point is added to the Action Points view:

2. Delete/disable/enable a breakpoint.

 To delete the breakpoint, click the red line number in the Source Pane, and then re-add it by
clicking again. You can also select it in the Action Points view, right-click for a context menu,
and select Delete or simply hit the Del or Delete key on your keyboard.

 To disable a breakpoint, click the checkmark in the Action Points view. The icon dims to show
it is disabled:

Click the checkmark again to re-enable it. Again, you can also disable or re-enable a breakpoint using
the context menu.

Setting and Running to a Breakpoint (Action Point) Run Your Program and Observe the Call Stack 64

Basic Debugging

NOTE: An action point also has a “When hit” option for controlling whether to stop all
threads in a process or group, or just a single thread or process. See Controlling
an Action Point’s Width on page 124for more information.

Run Your Program and Observe the Call Stack

Run the program by clicking Restart () on the toolbar.

The program halts at the breakpoint with the PC at line 119:

The Call Stack view shows that the program is stopped in the expression() function.

The Local Variables view displays any local variables in scope.

RELATED TOPICS
Action points properties About Action Points on page 83

Enabling/disabling action points Managing and Diving on Action Points on page 129

Setting and Running to a Breakpoint (Action Point) Run Your Program and Observe the Call Stack 65

Basic Debugging

If you move the focus back up the call stack, the local variables in the Local Variables view update for the selected
scope and the source related to that frame displays:

RELATED TOPICS
Action points, the Call Stack, and process/
thread state

Action Point Width and Process/Thread State on
page 125

Examining Data Viewing Variables in the Local Variables View 66

Basic Debugging

Examining Data
Examining data is, of course, a primary focus of any debugging process. TotalView provides multiple tools to
examine, display, and edit data.

You can quickly view data local to the selected call stack frame from within the Local Variables view. You can drill
down by clicking on the left arrow to view compound data structures. To watch a variable’s value change while the
program runs, add it to the Data View where it remains even when no longer in scope.

In both the Local Variables view and the Data View, you can drill down on compound variables by clicking on the
arrows to open and observe the data structures.

Add variables to the Data View where you can create expressions, cast data to another type, and perform other
data-related tasks.

This section discusses viewing variables in the Local Variables view, and then using the Data View to look at global
and compound data.

NOTE: These procedures on examining data can be performed independently of the tasks in other
sections in this chapter, but you must first load the program (Load the Program to Debug on
page 54).

Viewing Variables in the Local Variables View
First, we’ll add a breakpoint so the program will stop execution and we can view data.

1. Set a breakpoint.

Examining Data Viewing Variables in the Local Variables View 67

Basic Debugging

 Navigate to the word “evaluate” on line 32, in main(), to open evalexpr.c. Set a breakpoint
on line 15 inside the evaluate() function at the assignment statement.

NOTE: Disable any other breakpoints you have set, for this discussion.

 Click Go () on the toolbar. The program stops on the breakpoint.

Now let’s view some data.

2. View variables in the Local Variables view

The Local Variables view lists local variables. To view compound variables, click the left arrow.

Examining Data Viewing Variables in the Data View 68

Basic Debugging

The Info view displays additional detail about the location of the stopped thread and the selected frame in
the stack trace.

3. View variables in a tooltip

In the Source pane or the Local Variables view, hover over the variable result to view a tool tip that displays
its value:

Viewing Variables in the Data View
The Data View is a powerful tool that can list any variable in your program, along with its current or previous value
and other information. This helps you to monitor variables as your program executes:

 View changing values of variables.

 Drill down into the nested structures of compound variables (which you can also do in the Local
Variables view)

 Add global variables to the Data View by directly typing them in.

Examining Data Viewing Variables in the Data View 69

Basic Debugging

 Add expressions involving your program data.

Watching Data Values Update

As you run your program, any data added to the Data View displays updated values.

NOTE: This discussion assumes that you have set a breakpoint on line 15 in the evaluate() function
and that you have clicked Go, as discussed in Viewing Variables in the Local Variables View.

1. Add a Variable to the Data View

 From the Local Variables view, just drag a variable into the Data View.

Alternatively, right-click and select Add to Data View:

 Add a global variable by double clicking Add New Expression in the Data View and manu-
ally entering it:

Examining Data Viewing Variables in the Data View 70

Basic Debugging

Once entered, TotalView populates its type and value:

2. View nested structures.

NOTE: You can also view compound structures in the Local Variables view.

The variable node is a compound type with several nested structures.

 To view any nested structure, click the right-arrow, which means that additional nested struc-
tures exist. Here, we’ve drilled into the node variable’s union u to see that it contains a left
and right struct, and a double value.

 Re-enable the breakpoint at line 119 in the readexpr() function by clicking on its checkbox in
the Action Points view, or recreate it if necessary:

 Click Go twice to run the program to the re-enabled breakpoint.

Examining Data Viewing Variables in the Data View 71

Basic Debugging

To see a variable’s value, drill further down into the left or right variable:

Remember that the data provided to the program consists of three simple expressions:
2+3
2*(4/5)
(1/2)-(3/4)
At this point in the program’s execution, the second expression is being read in. In the Data View, note
that left has been assigned a value of 4. If you drill into right, it will have a value of 5, i.e. the input for
the right side of the second expression.

3. View updated values.

 Click Go several times to run the program to the two breakpoints.

As the program reads in the expressions and evaluates them, the values change in the Data View:

Examining Data Viewing Variables in the Data View 72

Basic Debugging

4. View the output in the Input/Output view.

The output of the program goes to stdout when fflush() is called.

As each expression is evaluated and printed to stdout, when the stdout buffer is flushed, the Input/Output
view shows the result of evaluating the expression. Run the program to the end to see the completed out-
put.

RELATED TOPICS
More on the Data View The Data View on page 161

More on the Local Variables view The Call Stack, Local Variables, and Registers
Views on page 147

Moving On Viewing Variables in the Data View 73

Basic Debugging

Moving On
 For an overview on TotalView’s new interface, see An Initial Look at the Interface on page 4.

 For more information on ways to start and manage sessions in TotalView, see Starting TotalView
and Creating a Debugging Session on page 18 and Creating and Managing Sessions on page 23.

 To use the Command Line Interface, see Using the Command Line Interface (CLI) on page 231.

 To run your program backward, starting from the point of failure and working back in time to find
the cause, see the ReplayEngine User Guide.

74

Program Navigation

If your program is large or includes multiple source files, it may be difficult to find program elements you want
to examine. TotalView provides several ways to search your applications for text strings, files or functions.

 Navigating from within the Source Pane on page 75. Navigate to a function from within the
Source pane using the context menu.

 Highlighting a String and the Find Function on page 76. Search in the Source view by
highlighting a string or using the Find function.

 The Lookup File or Function View on page 78. Use the Lookup File or Function view to search
for files or functions.

You can also customize the system variables TotalView uses as part of the search path when searching
for program elements. See Search Path on page 272.

 The Documents View on page 80 displays all open source files, updating automatically when
files in the Source pane are opened or closed.

Navigating from within the Source Pane 75

Program Navigation

Navigating from within the Source Pane
You can navigate to a function in the Source pane.

Navigate to the evaluate() function call on line 32, by right-clicking and selecting Navigate to File or Function
from the context menu.

NOTE: If more than one result is found from the navigation operation, then all the results are shown
in the Lookup File or Function view. You can easily click through the results to navigate to the
location you want.

Note that since the evaluate() function is in a different file, evalexpr.c, that source file opens for viewing in addi-
tion to the source file already open containing the main() function.

Highlighting a String and the Find Function 76

Program Navigation

Highlighting a String and the Find Function
You can find specific text in Source views either by highlighting a string, or through the Find function.

When you click on some continuous string and it highlights, all other matching strings in that view are highlighted
also. You can scroll through the text to find all other occurrences of the string. To remove the highlighting, simply
click in any open space.

To activate the Find function, enter Ctrl-F or select Find from the Edit menu.

Highlighting a String and the Find Function 77

Program Navigation

If you select text in the Source view before activating the Find function, the selected string is loaded into the
search text box.

 results in

The Find function tells you how many matching strings it has found in a given file, lets you easily move to the Next

 (Ctrl-g) or Previous (Ctrl-Shift-g) occurrence, and allows you to make the search case sensitive or

whole word .

You can also activate the Wrap Search button, , to wrap back to the beginning of the file after the last
instance is reached.

The advantages of the Find function over simple highlighting are:

 In a large file, the Next and Previous controls save you tedious scrolling.

 The search can be refined using the case sensitive and whole word switches. Highlighting always
applies to whole strings whereas Find can look for partial strings, such as “eval” rather than
“evaluate”.

 If you move to another file in the Source view, the search is applied to that file so you can look for
the string in the new file.

Previous search strings are saved in the dropdown menu at the end of the text field, and these are saved
between debugging sessions, as is the state of the case sensitive and whole word buttons.

To close the Find function, press Esc or click the X at the right end of the window.

The Lookup File or Function View 78

Program Navigation

The Lookup File or Function View
The Lookup File or Function view takes any keyword search and returns a file or function from within your pro-
gram’s files.

Open the Lookup File or Function view.

NOTE: If the Lookup view is not visible, select Window > Views > Lookup File or Function or use the
keyboard shortcut F, to open it.

Searching for files or functions is based on keywords. The search encompasses the debugging symbols available
in the executable files for the processes running in TotalView. This means that if your program links in shared
libraries that were not compiled with debugging symbols, the search does not see files or functions related to
these shared libraries. Also, if a dynamically shared library is not loaded because the program has not called that
code, the debugging symbols from that library are not available.

The Lookup File or Function View 79

Program Navigation

For example, a search of “ex” returns a range functions and files:

Clicking on one of the results opens the source file in a tab in the Source pane. If the result is a function, the func-
tion definition is displayed in the source file. As you click through each returned result, the source appears in the
same tab.

Double-click on a result to create a permanent tab for the source file.

To display full path information in the results, select the checkbox at the bottom of the view.

The Documents View 80

Program Navigation

The Documents View
The Documents view displays all active files or documents, useful when a program includes multiple files. The
order of the displayed files matches that in the central area.

Figure 34, The Documents view

This view is open by default, but can be toggled off or on using the Windows > Views > Documents menu.

As you step through your code, the Documents view automatically displays any files that are opened, while
removing files that are closed. It maintains the order in which the files appear in the central area, from left to right.

You can use the Documents view to close or delete files by right-clicking on the file to launch a context menu:

Closing a file also closes it in the central area.

 81

PART II Debugging Tools and
Tasks

 Setting and Managing Action Points (Breakpoints) on page 82

About TotalView’s four types of action points: breakpoints, evalpoints, watchpoints, and barrier points.

 Examining and Editing Data on page 142

Using the Call Stack view, the VAR drawer, and the Data View.

 The Processes and Threads View on page 203

Using the Call Stack view, the VAR drawer, and the Data View.

 Debugging Python on page 217

Using TotalView to debug Python extensions.

 Using the Command Line Interface (CLI) on page 231

Using CLI commands via the Command Line view.

82

 Setting and Managing Action
Points (Breakpoints)

 About Action Points on page 83

 Breakpoints on page 85

 Evalpoints on page 97

 Watchpoints on page 107

 Barrier Points on page 116

 Controlling an Action Point’s Width on page 124

 Managing and Diving on Action Points on page 129

 More on Action Points Using the CLI on page 135

About Action Points 83

Setting and Managing Action Points (Breakpoints)

About Action Points
TotalView employs the concept of action points, which specify an action to perform when a thread or process
reaches a source line or machine instruction in your program.

TotalView supports four types of action points:

 A breakpoint stops execution of processes and threads that reach it. Other threads in the process
also stop, and you can also indicate that you want other related processes to stop. Breakpoints are
the simplest kind of action point.

 An evalpoint executes a code fragment when it is reached.

 A watchpoint monitors a location in memory and stops execution when it changes. A watchpoint
can stop all the threads in a group or a process, or can include an expression to evaluate.

 A barrier point synchronizes a set of threads or processes at a location.

Action Point Properties

 You can independently enable or disable action points. A disabled action point isn’t deleted;
however, when your program reaches a disabled action point, TotalView ignores it.

 You can share action points across multiple processes or set them in individual processes.

 Action points apply to all the threads in a process. In a multi-process program, the action point's
width, or scope, applies by default to all threads in all processes in a share group, i.e. those
processes that share the same executable. You can narrow the width to stop just a single thread
that executed to the breakpoint, or, conversely, broaden it to apply to all threads in all processes in
the control group, which contains all share groups.

 TotalView assigns unique ID numbers to each action point. These IDs display in the Action Points
view.

Figure 35, Action Points View

About Action Points 84

Setting and Managing Action Points (Breakpoints)

Each type of action point is identified with a distinctive icon, as displayed in Table 2.

NOTE: Conditional watchpoints can be created only in the CLI for this release.

Table 2: Action Point Types and Identifying Icons

Action Points Icons Type of Action Point How to Use

Breakpoint See Breakpoints on page 85

Evalpoint See Evalpoints on page 97

Watchpoint See Watchpoints on page 107

Barrier point See Barrier Points on page 139

Breakpoints Setting Source-Level Breakpoints 85

Setting and Managing Action Points (Breakpoints)

Breakpoints
You can set breakpoints either directly in source by navigating to the location and clicking on the line, or by using
the At Location dialog.

Setting Source-Level Breakpoints
Typically, you set and clear breakpoints before you start a process. To set a source-level breakpoint, select a line
number in the Source view.

Source View Line Number Indicators

 A bold line number denotes that the compiler generated one or more line number symbols for
the source line. Multiple symbols might be within a single image file, for example on a "for" loop
statement. Or, the line number symbols might be spread across multiple image files if the source
file was compiled into the executable, shared libraries, and/or CUDA code.

 No bold indicates that the compiler did not generate any line number symbols for the source line.
However, you can still set a sliding or pending breakpoint at the line, which is useful if you know that
code for that line will be dynamically loaded at runtime, for example, in a dynamically loaded
shared library or a CUDA kernel launch.

For example, Figure 36 illustrates that source lines 48 and 49 both have line number symbols. Lines with no bold
indicate that no executable code exists at those source lines yet (although you can set a sliding or pending break-
point at those lines, discussed in Pending Breakpoints on page 89 and Sliding Breakpoints on page 87).

Figure 36, Possible breakpoint locations in the Source view

Breakpoints Setting Source-Level Breakpoints 86

Setting and Managing Action Points (Breakpoints)

Set a breakpoint either by:

 Clicking directly on the line number in the Source view, or

 Right-clicking on the line number and using the context menu, or

 Clicking on a line in the Source View and then selecting the Action Points > Set Breakpoint menu
item.

Once set, the breakpoint displays in the Action Points menu.

Figure 37, Set a breakpoint

Add any number of breakpoints before you run your program. (You can add or remove breakpoints at any point
during your program's execution.)

NOTE: Setting a breakpoint on a line may cause that breakpoint to appear at many code locations.
For example, setting a breakpoint on a line of templated code may cause the breakpoint to
appear at all instances of that template.

When you set a breakpoint or barrier point, it is defined by a breakpoint expression, also called a breakpoint speci-
fication, displayed in the Action Points tab for that breakpoint, or entered into the CLI (if created using the CLI).
For more information, see dbreak in the TotalView Reference Guide.

Breakpoints Setting Source-Level Breakpoints 87

Setting and Managing Action Points (Breakpoints)

Sliding Breakpoints

If you try to set a breakpoint in the Source view at a location with no bolded line, i.e., if there are no line number
symbols for that source code line yet, TotalView automatically “slides” the breakpoint to the next line number in
the source file that does have a line number symbol.

For example, in Figure 38, a breakpoint was set at line 45 and slid to line 48 where there was a line number sym-
bol. The Source view then displayed a hollow red box indicating that it slid, along with a solid red box at the slid
location.

Figure 38, Sliding breakpoint

The Action Points Location column always displays the full breakpoint expression (in brackets). It also displays the
"best" source file and line number it can currently find. TotalView does not change the original breakpoint expres-
sion, in the event that dynamically loaded code would be a better match later.

The breakpoint expression—pointing to line 45—is displayed in the Actions Points Location column as well as the
location of the actual breakpoint at line 48. Retaining the original expression supports the situation in which a
library that is dynamically loaded does have line number symbols at that location. As the program runs and
dynamically loads code, TotalView reevaluates the breakpoint expressions, factoring in any new line number sym-
bols it finds. If better-matching line number information is found, the address blocks in the breakpoint are
updated to add the addresses of the new line number symbols, and possibly disable or invalidate old address
blocks. This ensures that the breakpoint triggers for the most relevant source line.

If TotalView cannot find a line number symbol following the line specified in the breakpoint expression, it creates
a pending breakpoint. For example, this could occur when setting a breakpoint at the end of a source file. See
Pending Breakpoints on page 89 for information.

Breakpoints Breakpoints at a Specific Location 88

Setting and Managing Action Points (Breakpoints)

Dynamic Code Loading Example

To see how this works, consider a program that will load code at runtime, such as when debugging CUDA code
running on a GPU.

Figure 39 illustrates a breakpoint set at line 91 that has slid to line 134:

Figure 39, Sliding breakpoints when dynamically loading code

Once the program is running and the CUDA code is loaded, TotalView recalculates the breakpoint expression and
is able to plant a breakpoint at line 91 in the CUDA code, which is an exact match for the breakpoint expression:

TotalView then disables the slid breakpoint at line 134 since it found a better match. Verify this using the dactions
command in the CLI:
1.<> dactions -full -block_lines
1 shared action point for group 3:
1 [/home/totalview/cuda-example/tx_cuda_matmul.cu#91] Enabled
Address 0: [Disabled] MatMulKernel+0x18, tx_cuda_matmul.cu#134 (0x0040372d)
Address 1: [Enabled] MatMulKernel+0xae0, tx_cuda_matmul.cu#91 (Location not mapped)
Share in group: true
Stop when hit: process

Breakpoints at a Specific Location
You can quickly create breakpoints throughout your program using the At Location dialog, providing a conve-
nient way to enter a valid breakpoint expression. Typical breakpoint expressions include a file and line number
location (myFile.cxx#35), or a function signature (main). Use the Create a pending breakpoint option to cre-
ate a pending breakpoint that becomes a breakpoint when TotalView finds the function or file.

Breakpoints Pending Breakpoints 89

Setting and Managing Action Points (Breakpoints)

For detailed information about the kinds of information you can enter in this dialog box, see the BreakPoint
Expressions section in dbreak in the TotalView Reference Guide.

To enter a breakpoint expression, select At Location from the Action Points menu, or press Ctrl-B.

This launches the At Location dialog for entering a breakpoint expression. Here, a breakpoint is created at line
119 in the file readexpr.c.

NOTE: TotalView does not support ambiguous breakpoints in the UI, meaning that if it cannot find a
location to set a breakpoint (or a barrier point), the breakpoint cannot be set.

Once you click Create Breakpoint, TotalView sets a breakpoint at the location. If you enter a function name,
TotalView s sets the breakpoint at the function’s first executable line. If you check the Create a pending break-
point box, TotalView creates the breakpoint as soon as it finds the function or file. See Pending Breakpoints on
page 89.

Pending Breakpoints
TotalView supports pending breakpoints, useful when setting a breakpoint on code contained in a library that has
not yet been loaded into memory.

Breakpoints Pending Breakpoints 90

Setting and Managing Action Points (Breakpoints)

A pending action point is a breakpoint, barrier point, or evalpoint created with a breakpoint expression that does
not yet correspond to any executable code. For example, a common use case is to create a pending function
breakpoint with a breakpoint expression that matches the name of a function that will be loaded at runtime via
dlopen(), CUDA kernel launch, or anything that dynamically loads executable code.

All four types of breakpoints can be pending (this includes line, function, methods in a class, and virtual function
breakpoints). Further, a breakpoint may transition between pending to non-pending as image files are loaded,
breakpoint expressions are reevaluated, address blocks are added, and invalid address blocks are nullified.

Set a pending breakpoint either on a function using the At Location dialog, or on a line number in the Source
view.

Pending Breakpoints on a Function

When creating a breakpoint on a function using the Action Points > At Location dialog box, you are prompted to
choose whether to set the breakpoint as pending if TotalView can't find the function:

To immediately set a pending breakpoint, click Create a pending breakpoint directly in the At Location dialog.
This is useful if you are sure that the function name you are entering is correct (even if TotalView can’t find it)
because it will be dynamically loaded at runtime. The breakpoint is set as pending:

(Note that, if you click the pending box when TotalView can find the function, it ignores the “Create Pending”
request.)

Breakpoints Pending Breakpoints 91

Setting and Managing Action Points (Breakpoints)

Pending breakpoint prompt

If you didn’t select to create a pending breakpoint and the name you entered was not similar to any existing func-
tion, TotalView prompts to set a pending breakpoint.

Pending Breakpoints on a Line Number

Because TotalView “slides” a line number breakpoint to the next valid location (see Sliding Breakpoints), explicitly
setting a line number pending breakpoint is rarely necessary. If, however, you know that there will be code at that
spot, you can explicitly set a pending breakpoint in only these ways:

 By creating a line number breakpoint at a line near the end of a source file where the following
lines have no line number symbols, but where you expect there to be dynamically loaded code at
runtime. For example, here is a breakpoint set at line 177 just before the end of a file:

 In the At Location dialog box, type the file name and line number of a source file that has not been
loaded yet. For example, dynaloaded.c#42 where dynaloaded.c is compiled into a dynamically
loaded shared library. TotalView posts a dialog box to confirm, unless "Create a pending
breakpoint" is selected.

Conflicting Breakpoints

TotalView can place only one action point on an address. Because the breakpoints you specify are actually
expressions, the locations to which these expressions evaluate can overlap or even be the same. Sometimes, and
this most often occurs with pending breakpoints in dynamically loaded libraries, TotalView cannot predict when
action points will overlap. If they do, TotalView enables only one of the action points and disables all others that
evaluate to the same address. The action point that TotalView enables is that with the lowest actionpoint ID. The
other overlapping action points are marked as "conflicted" in the Action Points pane and dactions output.

Breakpoints Breakpoints at Execution 92

Setting and Managing Action Points (Breakpoints)

Breakpoints at Execution
Once you have added all your breakpoints, run or step through your program. When a breakpoint is hit, the
Action Points view highlights the breakpoint that stopped execution.

Both the window title bar and the status bar at the bottom of the interface display information when a break-
point is reached:

The above image shows execution stopped at a breakpoint. Similar information is displayed for the other action
points, which currently are set through the command line interface as described in the section More on Action
Points Using the CLI on page 135.

Modifying a Breakpoint
Modify a breakpoint by either:

 In the Action Points view, right-clicking on the breakpoint to bring up the context menu and
selecting Properties.

or

Breakpoints Modifying a Breakpoint 93

Setting and Managing Action Points (Breakpoints)

 In the Source view, right clicking on the breakpoint’s line number to bring up the context menu
and selecting Properties.

This launches the Modify BreakPoint dialog.

In this dialog, you can enable, disable or delete a breakpoint, view the breakpoint’s location using the At location
drop-down, or adjust the breakpoint’s width under the When hit, stop drop-down.

For example:

The three width selections control how a breakpoint behaves in a multi-threaded or multi-process program.
Here’s a summary:

 Group: Stops all running threads in all processes in the group.

 Process: Stops all the running threads in the process containing the thread that hit the breakpoint.

Breakpoints Setting Breakpoints When Using the fork()/execve() Functions 94

Setting and Managing Action Points (Breakpoints)

 Thread: Stops only the thread that first executes to this breakpoint.

Setting Breakpoints When Using the fork()/execve() Functions
You must link with the dbfork library before debugging programs that call the fork() and execve() functions.

Debugging Processes That Call the fork() Function

By default, TotalView places breakpoints in all processes in a share group. When any process in the share group
reaches a breakpoint, TotalView stops all processes in the control group. This means that TotalView stops the
control group that contains the share group. This control can contain more than one share group.

To override these defaults, modify the breakpoint’s width in the action point’s properties, Modify Breakpoint dia-
log box.

Debugging Processes that Call the execve() Function

NOTE: You can control how TotalView handles system calls to execve(). See Exec Handling on
page 340.

Shared breakpoints are not set in children that have different executables.

To set the breakpoints for children that call the execve() function:

RELATED TOPICS
About an action point’s width Controlling an Action Point’s Width on page 124

Saving action points Saving and Loading Action Points on page 133

About the TV::stop_all variable which indicates
the default behavior for a breakpoint’s width

The TV::stop_all variable in the TotalView Reference Guide

CLI: dset SHARE_ACTION_POINT false

RELATED TOPICS
The Modify Breakpoint dialog box Modifying a Breakpoint on page 92

More on an action point’s width Controlling an Action Point’s Width on page 124

Linking with the dbfork library Linking with the dbfork Library on page 573

More on share groups and control How TotalView Creates Groups on page 345

Breakpoints Setting Breakpoints When Using the fork()/execve() Functions 95

Setting and Managing Action Points (Breakpoints)

1. Set the breakpoints and breakpoint options in the parent and the children that do not call the execve()
function.

2. Start the multi-process program using the Group > Go command.

When the first child calls the execve() function, TotalView displays the following message:

Processname has exec’d name.Do you want to stop it now?

3. Answer Yes.

(If you answer No, you won’t have an opportunity to set breakpoints.)

4. Set breakpoints for the process.

After you set breakpoints for the first child using this executable, TotalView won’t prompt when other chil-
dren call the execve() function. This means that if you do not want to share breakpoints in children that use
the same executable, set the breakpoint options using the action point properties dialog.

5. Select the Group > Go command.

Example: Multi-process Breakpoint

The following program excerpt illustrates the places where you can set breakpoints in a multi-process program:
1 pid = fork();
2 if (pid == -1)
3 error ("fork failed");
4 else if (pid == 0)
5 children_play();
6 else
7 parents_work();

The following table describes what happens when you set a breakpoint at different places:

G

Line Number Result

1 Stops the parent process before it forks.

2 Stops both the parent and child processes.

3 Stops the parent process if the fork() function failed.

5 Stops the child process.

7 Stops the parent process.

Breakpoints Setting Breakpoints When Using the fork()/execve() Functions 96

Setting and Managing Action Points (Breakpoints)

RELATED TOPICS
Linking with the dbfork library Linking with the dbfork Library on page 573

Controlling system calls to execve(). Exec Handling on page 340

Evalpoints Setting Breakpoints When Using the fork()/execve() Functions 97

Setting and Managing Action Points (Breakpoints)

Evalpoints
TotalView can execute code fragments at specified locations with a special type of action point called an evalpoint.
TotalView evaluates these code fragments in the context of the target program, which means that you can refer to
program variables and branch to places in your program.

Use evalpoints to:

 Include instructions that stop a process and its relatives. If the code fragment can make a decision
whether to stop execution, it is called a conditional breakpoint, see Creating Conditional
Breakpoints on page 102.

 Test potential fixes or patches for your program; see Patching Programs on page 103.

 Include a goto in C or Fortran that transfers control to a line number in your program. This lets you
test program patches.

 Execute a TotalView function. These functions can stop execution and create barriers and
countdown breakpoints. For more information on these statements, see Using Built-in Variables
and Statements on page 557.

 Set the values of your program’s variables.

You can set an evalpoint at any source line that generates executable code. Valid source lines have a bold line
number. When TotalView encounters an evalpoint, it executes the code in the evalpoint before the code on that
line.

NOTE: If you call a function from an evalpoint and a breakpoint is within that function, TotalView
stops execution at that breakpoint. Similarly, if an evalpoint is in the function, TotalView also
evaluates that evalpoint.

Evalpoints modify only the processes being debugged—they do not modify your source program or create a per-
manent patch in the executable. If you save a program’s action points, however, TotalView reapplies the evalpoint
whenever you start a debugging session for that program.

RELATED TOPICS
Some examples of conditional breakpoints Creating Conditional Breakpoints on page 102

Saving Action Points Saving Action Points to a File Using the CLI on page 140

Evalpoints Setting an Evalpoint 98

Setting and Managing Action Points (Breakpoints)

Setting an Evalpoint
You can set an evalpoint at any source line that generates executable code. Valid source lines have a bold line
number. Create an evalpoint in these ways:

 Through the CLI (see Evalpoints on page 136).

 From the Source view by right-clicking on a line number to launch the context menu, and
selecting Create Evaluation Point.

 From the Action Points menu by selecting Create Evaluation Point.

This launches the Create Evaluation Point dialog. Enter the code fragment and select the language (by default
the language is chosen based on what TotalView detects as the language for the application). You can see the full
path to the source file using the drop down arrow next to the file’s name.

Using built-in TotalView statements to control
execution

Using Built-In Statements on page 558

Writing code for an expression Using Programming Language Elements on page 560

RELATED TOPICS

Evalpoints Setting an Evalpoint 99

Setting and Managing Action Points (Breakpoints)

When you are satisfied with the code fragment, select Create Evaluation Point.

If TotalView successfully creates the evalpoint, the dialog closes, the Action Points view displays the evalpoint, and
the Source view highlights the line number with the evalpoint in the corresponding color.

Evalpoints Creating a Pending Evalpoint 100

Setting and Managing Action Points (Breakpoints)

If TotalView cannot create the evalpoint, it displays an error message below the box.

Creating a Pending Evalpoint
You can create a pending evalpoint at a location in your code that hasn’t yet been loaded, for instance, when your
program will dynamically load libraries at runtime. Setting a pending evalpoint is, essentially, allowing its expres-
sion to fail compilation when it is created. For example, it may reference a local variable in the code that will not
be defined in the symbol table until the code is loaded and TotalView reads the debug symbols. When your pro-
gram loads new code at an evalpoint location, TotalView will attempt to compile the expression. If the evalpoint
expression still fails to compile, the evalpoint is handled like a breakpoint.

Evalpoints Creating a Pending Evalpoint 101

Setting and Managing Action Points (Breakpoints)

To create a pending evalpoint, simply create an evalpoint at the source line where you know dynamically loaded
code will be. Once you click Create Evaluation Point in the Create Evaluation Point dialog and TotalView can’t
locate any debug symbols for that line, a pop-up prompts you to choose to create a pending evalpoint:

If you click Yes, the evalpoint is created, identified as pending with an orange boxed line in the Source view and a
“pending” identifier in the Action Points tab:

A pending eval point is one in which:

 The underlying breakpoint is pending. In this case, TotalView is unlikely to be able to compile the
expression (since the breakpoint is not yet instantiated), so it creates a pending evalpoint.

 A pending evalpoint has been explicitly created. Explicitly creating a pending evalpoint is useful
when an evalpoint is intended to be set in dynamically loaded code (such as CUDA GPU code), and
so the breakpoint slides to the host code before runtime.

Note that the "Create a pending evalpoint" flag sticks to the evalpoint for the duration of the debug session. The
flag is not saved with the eval point when TotalView saves action points; however, when restoring the action
points, TotalView will set the flag if the underlying breakpoint needed to slide or was pending.

Evalpoints Modifying an Evalpoint 102

Setting and Managing Action Points (Breakpoints)

For more information on pending breakpoints, see Pending Breakpoints on page 89.

Modifying an Evalpoint
Modify an evalpoint by either:

 In the Source view, right-clicking on the evalpoint and selecting Properties.

 In the Action Points menu, right clicking on the evalpoint to launch the context menu and
selecting Properties.

This launches the Modify Evaluation Point dialog. From here you can change the code, language, or whether or
not the evalpoint is enabled.

Creating Conditional Breakpoints
The following are examples for creating conditional breakpoints:

 This example defines a breakpoint that is reached whenever the counter variable is greater than
20, but less than 25:

Evalpoints Patching Programs 103

Setting and Managing Action Points (Breakpoints)

if (counter > 20 && counter < 25) $stop;
 This example defines a breakpoint that stops execution every tenth time that TotalView executes

the $countfunction
$count 10

 The following example defines a breakpoint with a more complex expression:
$count my_var * 2
When the my_var variable equals 4, the process stops the eighth time it executes the $count function. After
the process stops, TotalView reevaluates the expression. If my_var equals 5, the process stops again after
the process executes the $count function ten more times.

The TotalViewinternal counter is a static variable, which means that TotalView remembers its value every time it
executes the evalpoint. Suppose you create an evalpoint within a loop that executes 120 times and the evalpoint
contains $count 100. Also assume that the loop is within a subroutine. As expected, TotalView stops execution
the 100th time the evalpoint executes. When you resume execution, the remaining 20 iterations occur.

The next time the subroutine executes, TotalView stops execution after 80 iterations because it will have counted
the 20 iterations from the last time the subroutine executed.

There is good reason for this behavior. Suppose you have a function that is called from several places within your
program. Because TotalView remembers every time a statement executes, you could, for example, stop execution
every 100 times the function is called. In other words, while $count is most often used within loops, you can use
it outside of them as well.

For descriptions of the $stop, $count, and variations on $count, see Using Built-in Variables and Statements on
page 557.

Patching Programs
Evalpoints let you patch your programs and route around code that you want replaced, supporting branching
around code that you don’t want your program to execute and adding new statements. In many cases, correcting
an error means that you will do both: use a goto to branch around incorrect lines, and then add corrections.

For example, suppose you need to change several statements. Just add these to an action point, then add a goto
(C) or GOTO (Fortran) statement that jumps over the code you no longer want executed. For example, the eval-
point in Figure 40 executes three statements and then skips to line 656.

Evalpoints Patching Programs 104

Setting and Managing Action Points (Breakpoints)

Branching Around Code

The following example contains a logic error in which the program dereferences a null pointer:
1 int check_for_error (int *error_ptr)
2 {
3 *error_ptr = global_error;
4 global_error = 0;
5 return (global_error != 0);
6 }

The error occurs because the routine that calls this function assumes that the value of error_ptr can be 0. The
check_for_error()function, however, assumes that error_ptr isn’t null, which means that line 3 can dereference a
null pointer.

Correct this error by setting an evalpoint on line 3 and entering:
if (error_ptr == 0) goto 4;

If the value of error_ptr is null, line 3 isn’t executed. Note that you are not naming a label used in your program.
Instead, you are naming one of the line numbers generated by TotalView.

Adding a Function Call

The example in the previous section routed around the problem. If all you wanted to do was monitor the value of
the global_error variable, you can add a printf() function call that displays its value. For example, the following
might be the evalpoint to add to line 4:
printf ("global_error is %d\n", global_error);

Figure 40, Evalpoint expression with GOTO

Evalpoints Patching Programs 105

Setting and Managing Action Points (Breakpoints)

TotalView executes this code fragment before the code on line 4; that is, this line executes before global_error is
set to 0.

Correcting Code

The following example contains a coding error: the function returns the maximum value instead of the minimum
value:
1 int minimum (int a, int b)
2 {
3 int result; /* Return the minimum */
4 if (a < b)
5 result = b;
6 else
7 result = a;
8 return (result);
9 }

Correct this error by adding the following code to an evalpoint at line 4:
if (a < b) goto 7; else goto 5;

This effectively replaces the if statement on line 4 with the code in the evalpoint.

Using Programming Language Constructs

You can also use programming language constructs in an evalpoint. For example, here’s a trivial example of code
that can execute:
int i, j, k;
j = k = 10;
for (i=0; i< 20; i++)
{
j = j + access_func(i, k);
}
j;

This code fragment declares a couple of variables, runs them through a for loop, then displays the value of j. In all
cases, the programming language constructs being interpreted or compiled within TotalView are based on code
within TotalView. TotalView is not using the compiler you used to create your program or any other compiler or
interpreter on your system.

Evalpoints Patching Programs 106

Setting and Managing Action Points (Breakpoints)

Notice the last statement in the Create Evaluation Point dialog on the left in Figure 41. The results are printed in
the shell in which TotalView is running, displayed on the right.

TotalView assumes that there is always a return value, even if it’s evaluating a loop or the results of a subroutine
returning a void. The results are, of course, not well-defined. If the value returned is not well-defined, TotalView
returns a zero.

The code within an evalpoint does not run in the same address space as that in which your program runs.
Because TotalView is a debugger, it knows how to reach into your program’s address space. The reverse isn’t true:
your program can’t reach into the TotalView address space. This forces some limitations upon what you can do. In
particular, you cannot enter anything that directly or indirectly needs to pass an address of a variable defined
within the TotalView expression into your program. Similarly, invoking a function that expects a pointer to a value
and whose value is created within TotalView can’t work. However, you can invoke a function whose parameter is
an address and you name something within that program’s address space. For example, you could say something
like adder(an_array) if an_array is contained within your program.

Figure 41, Displaying the Value of the Last Statement

Watchpoints Patching Programs 107

Setting and Managing Action Points (Breakpoints)

Watchpoints
TotalView can monitor the changes that occur to memory locations with a special type of action point called a
watchpoint. Watchpoints are most frequently used to find a statement in your program that is writing to inappro-
priate places. This can occur, for example, when processes share memory, and more than one process writes to
the same location. It can also occur when your program writes off the end of an array or when your program has
a dangling pointer.

Topics in this section are:

 Creating Watchpoints on page 108

 Modifying Watchpoints on page 110

 Watching Memory on page 111

 Triggering Watchpoints on page 112

 Using Watchpoint Expressions on page 113

 Using Watchpoints on Different Architectures on page 114

TotalView watchpoints are called modify watchpoints because TotalView triggers a watchpoint only when your pro-
gram modifies a memory location. If a program writes a value into a location that is the same as that which is
already stored, TotalView doesn’t trigger the watchpoint because the location’s value did not change.

For example, if location 0x10000 has a value of 0, and your program writes a value of 0 to this location, TotalView
doesn’t trigger the watchpoint, even though your program wrote data to the memory location. See Triggering
Watchpoints on page 112 for more details on when watchpoints trigger.

NOTE: This discussion describes how to create and modify watchpoints using the UI. To set a watch-
point with the CLI see Watchpoints on page 137.

Watchpoints Creating Watchpoints 108

Setting and Managing Action Points (Breakpoints)

Creating Watchpoints
Create a watchpoint in these ways:

 From the Local Variable view or the Data view by selecting the variable expression, right-clicking to
view the context menu, and selecting Create Watchpoint.

 From the Action Points menu and then selecting Create Watchpoint.

Because TotalView cannot determine where to set the expression when using this option, it displays a dialog
box into which you type the variable’s name.

Note: If your platform doesn’t support watchpoints, TotalView does not display the option.

After you enter the name of the variable and click on Create Watchpoint, TotalView creates a watchpoint that
stops all running threads in all processes in the group when the watchpoint triggers. If you wish to create a watch-
point that stops all running threads in a process or evaluates an expression when the watchpoint triggers, you
must modify the watchpoint after you create it. See Modifying Watchpoints on page 110 for information on
modifying watchpoints.

Watchpoints Creating Watchpoints 109

Setting and Managing Action Points (Breakpoints)

If you set a watchpoint on a stack variable, TotalView reports that you’re trying to set a watchpoint on “non-global”
memory. For example, the variable is on the stack or in a block and the variable will no longer exist when the stack
is popped or control leaves the block. In either of these cases, it is likely that your program will overwrite the
memory, and the watchpoint will no longer be meaningful. See Watching Memory on page 111 for more
information.

Displaying, Deleting, or Disabling Watchpoints

The watchpoint entry, indicated by a Watch () icon displays the action point ID, the amount of memory
being watched, and the location watched.

NOTE: A watchpoint’s width is set to Group by default. See About an Action Point’s Width: Group, Pro-
cess or Thread on page 124.
See Modifying Watchpoints on page 110 for information on changing the width for
watchpoints.

Disable or delete a watchpoint in the Action Points view by right-clicking for a context menu or pressing the
Delete key. A disabled watchpoint appears grayed out.

As you step through your program and the watchpoint is triggered, it displays in the Process & Threads view.

Watchpoints Modifying Watchpoints 110

Setting and Managing Action Points (Breakpoints)

Modifying Watchpoints
Modify or delete a watchpoint from the Action Points view by right clicking on the watchpoint to bring up the con-
text menu and selecting Properties. This launches the Modify Watchpoint dialog.

In this dialog you can set the following:

 Enabled: If selected, TotalView makes this watchpoint active. (If a watchpoint is inactive, TotalView
ignores changes to the watched memory locations.)

 Address: The first (or lowest) memory address to watch. Depending on the platform, this address
may need to be aligned to a multiple of the Length in Bytes field. If you edit the address of an
existing watchpoint, TotalView alters the watchpoint so it watches this new memory location and
reassigns the watchpoint’s action point ID.

 Length in Bytes: The number of bytes that TotalView should watch. Normally, this amount is the
size of the variable. However, some architectures limit the amount of memory that can be watched.
In other cases, you may want TotalView to monitor a few locations in an array. For information on
architectural limitations, see Using Watchpoints on Different Architectures on page 114.

 When value changes: The three width selections control how a breakpoint behaves in a multi-
threaded or multi-process program. Here’s a summary:

Watchpoints Watching Memory 111

Setting and Managing Action Points (Breakpoints)

 Stop Group: Stop all running threads in all processes in the group. When you first create a
watchpoint Stop Group is selected by default.

 Stop Process: Stop all the running threads in the process containing the thread that hit the
breakpoint.

 Evaluate Expression: Select this to enter a code fragment in the provided field. The expres-
sion is compiled into interpreted code that is executed each time the watchpoint triggers.
These points can be used to implement countdown and conditional watchpoints.

If you select Evaluate Expression, you must specify the following:

 Expression field: Enter the code fragment in the expression field.

 Type for $newval/$oldval: If you are placing the value stored at the memory location into a
variable (using $newval and $oldval), you must define the variable’s data by using a scalar
type, such as int, integer, float, real, or char. You cannot use aggregate types such as arrays
and structures.

If the size of the watched location matches the size of the data type entered here, TotalView interprets
the $oldval and $newval information as the variable’s type. If you are watching an entire array, the
watched location can be larger than the size of this type. For more information about setting the type,
see Using Watchpoint Expressions on page 113.

 Language: Indicates the programming language in which you wrote the expression.

Watching Memory
A watchpoint tracks a memory location — it does not track a variable.

This means that a watchpoint might not perform as you would expect when watching stack or automatic vari-
ables. For example, suppose that you want to watch a variable in a subroutine. When control exits from the
subroutine, the memory allocated on the stack for this subroutine is reassigned. At this time, TotalView is watch-
ing memory that is no longer associated with the original stack variable. When the stack memory is reassigned to
a new stack frame, TotalView is still watching the same address location. This means that TotalView triggers the
watchpoint when something changes this newly assigned memory.

Also, if your program reinvokes a subroutine, it usually executes in a different stack location. TotalView cannot
monitor changes to the variable because it is at a different memory location.

All of this means that in most circumstances, you shouldn’t place a watchpoint on a stack variable. If you need to
watch a stack variable, you will need to create and delete the watchpoint each time your program invokes the
subroutine.

Watchpoints Triggering Watchpoints 112

Setting and Managing Action Points (Breakpoints)

This doesn’t mean you can’t place a watchpoint on a stack or heap variable. It just means that what happens is
undefined after this memory is released. For example, after you enter a routine, you can be assured that memory
locations are always tracked accurately until the memory is released.

In some circumstances, a subroutine may be called from the same location. This means that its local variables
might be in the same location. In this case, the watchpoint would behave as expected.

If you place a watchpoint on a global or static variable that is always accessed by reference (that is, the value of a
variable is always accessed using a pointer to the variable), you can set a watchpoint on it because the memory
locations used by the variable are not changing.

Triggering Watchpoints
When a watchpoint triggers, the thread’s program counter (PC) points to the instruction following the instruction
that caused the watchpoint to trigger. For example, this watchpoint on the variable arg_count triggered, placing
the PC at the next instruction:

If the memory store instruction is the last instruction in a source statement, the PC points to the source line fol-
lowing the statement that triggered the watchpoint. (Breakpoints and watchpoints work differently. A breakpoint
stops before an instruction executes. In contrast, a watchpoint stops after an instruction executes.)

Using Multiple Watchpoints

If a program modifies more than one byte with one program instruction or statement, which is normally the case
when storing a word, TotalView triggers the watchpoint with the lowest memory location in the modified region.
Although the program might be modifying locations monitored by other watchpoints, TotalView triggers the
watchpoint only for the lowest memory location. This can occur when your watchpoints are monitoring adjacent
memory locations and a single store instruction modifies these locations.

Watchpoints Using Watchpoint Expressions 113

Setting and Managing Action Points (Breakpoints)

For example, suppose that you have two 1-byte watchpoints, one on location 0x10000 and the other on location
0x10001. Also suppose that your program uses a single instruction to store a 2-byte value at locations 0x10000
and 0x10001. If the 2-byte storage operation modifies both bytes, the watchpoint for location 0x10000 triggers.
The watchpoint for location 0x10001 does not trigger.

Here’s a second example. Suppose that you have a 4-byte integer that uses storage locations 0x10000 through
0x10003, and you set a watchpoint on this integer. If a process modifies location 0x10002, TotalView triggers the
watchpoint. Now suppose that you’re watching two adjacent 4-byte integers that are stored in locations 0x10000
through 0x10007. If a process writes to locations 0x10003 and 0x10004 (that is, one byte in each), TotalView trig-
gers the watchpoint associated with location 0x10003. The watchpoint associated with location 0x10004 does
not trigger.

Performance Impact of Copying Previous Data Values

TotalView keeps an internal copy of data in the watched memory locations for each process that shares the
watchpoint. If you create watchpoints that cover a large area of memory or if your program has a large number of
processes, you increase TotalView’s virtual memory requirements. Furthermore, TotalView refetches data for each
memory location whenever it continues the process or thread. This can affect performance.

Using Watchpoint Expressions
If you associate an expression with a watchpoint (by selecting the Evaluate Expression button in the Modify
Watchpoint dialog box entering an expression), TotalView evaluates the expression after the watchpoint triggers.
The programming statements that you can use are identical to those used when you create an eval point, except
that you can’t call functions from a watchpoint expression.

The variables used in watchpoint expressions must be global. This is because the watchpoint can be triggered
from any procedure or scope in your program.

NOTE: Fortran does not have global variables. Consequently, you can’t directly refer to your pro-
gram’s variables.

TotalView has two variables that are used exclusively with watchpoint expressions:

 $oldval: The value of the memory locations before a change is made.

 $newval: The value of the memory locations after a change is made.

The following is an expression that uses these values:
if (iValue != 42 && iValue != 44) {
iNewValue = $newval; iOldValue = $oldval; $stop;}

Watchpoints Using Watchpoints on Different Architectures 114

Setting and Managing Action Points (Breakpoints)

When the value of the iValue global variable is neither 42 nor 44, TotalView stores the new and old memory val-
ues in the iNewValue and iOldValue variables. These variables are defined in the program. (Storing the old and
new values is a convenient way of letting you monitor the changes made by your program.)

The following condition triggers a watchpoint when a memory location’s value becomes negative:
if ($oldval >= 0 && $newval < 0) $stop
And here is a condition that triggers a watchpoint when the sign of the value in the memory location changes:
if ($newval * $oldval <= 0) $stop
Both of these examples require that you set the Type for $oldval/$newval field in the Modify Watchpoint dia-
log box.

For more information on writing expressions, see Using Programming Language Elements on page 560.

If a watchpoint has the same length as the $oldval or $newval data type, the value of these variables is apparent.
However, if the data type is shorter than the length of the watch region, TotalView searches for the first changed
location in the watched region and uses that location for the $oldval and $newval variables. (It aligns data in the
watched region based on the size of the data’s type. For example, if the data type is a 4-byte integer and byte 7 in
the watched region changes, TotalView uses bytes 4 through 7 of the watchpoint when it assigns values to these
variables.)

For example, suppose you’re watching an array of 1000 integers called must_be_positive, and you want to trig-
ger a watchpoint as soon as one element becomes negative. You declare the type for $oldval and $newval to be
int and use the following condition:
if ($newval < 0) $stop;
When your program writes a new value to the array, TotalView triggers the watchpoint, sets the values of $oldval
and $newval, and evaluates the expression. When $newval is negative, the $stop statement halts the process.

For descriptions of $newval, $oldval, $stop, and variations on $stop, see Using Built-in Variables and State-
ments on page 557.

This can be a very powerful technique for range-checking all the values your program writes into an array.
(Because of byte length restrictions, you can only use this technique on Solaris.)

Using Watchpoints on Different Architectures
Add entry for rockM and CUDA does not support. Built on top of hardware-specific feature. Here it says "watch-
points are not available" add nVIDIA GPUs or CUDA.

Watchpoints Using Watchpoints on Different Architectures 115

Setting and Managing Action Points (Breakpoints)

The number of watchpoints, and their size and alignment restrictions, differ from platform to platform. This is
because TotalView relies on the operating system and its hardware to implement watchpoints.

Watchpoint support depends on the target platform where your application is running, not on the host platform
where TotalView is running.

For example, if you are running TotalView on host platform "H" (where watchpoints are not supported), and
debugging a program on target platform "T" (where watchpoints are supported), you can create a watchpoint in a
process running on "T", but not in a process running on "H".

NOTE: Watchpoints are not available on the Mac OS X platform

The following list describes constraints that exist on each platform:

Computer Constraints

Linux x86-64
(AMD and Intel)

Watchpoints use the four hardware debugging registers in the x86 processor and also use
the ptrace system call to manipulate those registers. You can create up to four watchpoints
and each must be 1, 2, 4, or 8 bytes in length, and a memory address must be aligned for
the byte length. For example, you must align a 4-byte watchpoint on a 4-byte address
boundary.

Linux-PowerLE On Linux-PowerLE platforms, TotalView uses the Linux kernel's ptrace() PowerPC hardware
debug extension to plant watchpoints. The ptrace() interface implements a “hardware
breakpoint” abstraction that reflects the capabilities of PowerPC BookE and server proces-
sors. If supported at all, the number of watchpoints varies by processor type. Typically, the
PowerPC supports at least 1 watchpoint up to 8 bytes long. Systems with the DAWR fea-
ture support a watchpoint up to 512 bytes long. The watchpoint triggers if the referenced
data address is greater than or equal to the watched address and less than the watched
address plus length. Alignment constraints may apply. For example, the watched length
may be required to be a power of 2, and the watched address may need to be aligned to
that power of 2; that is, -(address % length) == 0.

Linux ARM64 TotalView supports watchpoints for ARMv8 processors using the hardware’s debug watch-
point registers. You can typically create up to four watchpoints (although some processors
may have different limits, allowing from 2 to 16 watchpoints, or none at all). Each must be
1, 2, 4, or 8 bytes in length, and the watched memory address must be aligned for the byte
length. Watchpoints cannot overlap.

Mac OSX Watchpoints are not supported.

Watchpoints Using Watchpoints on Different Architectures 116

Setting and Managing Action Points (Breakpoints)

Typically, a debugging session doesn’t use many watchpoints. In most cases, you are only monitoring one mem-
ory location at a time. Consequently, restrictions on the number of values you can watch seldom cause problems.

Barrier Points About Barrier Breakpoint States 117

Setting and Managing Action Points (Breakpoints)

Barrier Points
A barrier breakpoint is similar to a simple breakpoint, differing only in that it holds processes and threads that
reach the barrier point. Other processes and threads continue to run. TotalView holds these processes or
threads until all processes or threads defined in the barrier point reach this same place. When the last one
reaches a barrier point, TotalView releases all the held processes or threads, but they do not continue executing
until you explicitly restart execution. In this way, barrier points let you synchronize your program’s execution.

Topics in this section are:

 About Barrier Breakpoint States on page 116

 Setting a Barrier Breakpoint on page 117

 Creating a Satisfaction Set on page 119

 Hitting a Barrier Point on page 120

 Releasing Processes from Barrier Points on page 121

 Using Barrier Points on page 121

About Barrier Breakpoint States
Processes and threads at a barrier point are held or stopped, as follows:

Held

A held process or thread cannot execute until all the processes or threads in its group are at the barrier, or until
you manually release it. The various go and step commands from the Group, Process, and Thread menus
cannot start held processes.

Stopped

When all processes in the group reach a barrier point, TotalView automatically releases them. They remain
stopped at the barrier point until you tell them to resume executing.

dbarrier

RELATED TOPICS
How to hold and release threads and
processes

“Holding and Releasing Processes and Threads” in the chapter
“Manipulating Processes and Threads” in the Classic TotalView
User Guide

Barrier Points Setting a Barrier Breakpoint 118

Setting and Managing Action Points (Breakpoints)

You can manually release held processes and threads with the Hold and Release CLI commands below. When
you manually release a process, the go and step commands become available again.

You can reuse the Hold command to again toggle the hold state of the process or thread.

When a process or thread is held, TotalView displays Stopped next to the relevant process or thread in the Pro-
cess State column in the Processes & Threads view.

Setting a Barrier Breakpoint
Set a barrier breakpoint in the same way as a regular breakpoint: by either selecting the line in the Source pane
and selecting Action Points > Set Barrier, or by right-clicking on the line and choosing Set Barrier from the con-
text menu.

Once the barrier point is set, customize its properties by right-clicking on the barrier point in either the Source
view or the Action Points tab, and choosing Properties to open the Modify Barrier Point dialog:

CLI: dfocus ...dhold
dfocus ...dunhold

Barrier Points Setting a Barrier Breakpoint 119

Setting and Managing Action Points (Breakpoints)

Figure 42, Modify Barrier Point Property dialog

You most often use barrier points to synchronize a set of threads. When a thread reaches a barrier, it stops, just
as it does for a breakpoint. The difference is that TotalView prevents—that is, holds—each thread reaching the
barrier from responding to resume commands (for example, step, next, or go) until all threads in the affected set
arrive at the barrier. When all threads reach the barrier, TotalView considers the barrier to be satisfied and
releases all of the threads being held there. They are just released; they do not continue.That is, they are left stopped
at the barrier. If you continue the process, those threads also run.

If you stop a process and then continue it, the held threads, including those waiting at an unsatisfied barrier, do
not run. Only unheld threads run.

The When hit, stop option:

The When hit, Stop drop-down menu sets which other threads TotalView stops when execution reaches the bar-
rier point, as follows:

Scope Stopped Threads

Group Stops all threads in the current thread’s control group.

Process Stops all threads in the current thread’s process.

Thread Stops only this thread.

Barrier Points Creating a Satisfaction Set 120

Setting and Managing Action Points (Breakpoints)

After all processes or threads reach the barrier, TotalView releases all held threads. Released means that these
threads and processes can now run.

The When done, stop option

The When Done, Stop drop-down menu defines what else it should stop, as follows:

Creating a Satisfaction Set
For more control over what processes or threads are stopped, use a satisfaction set. This setting defines which
processes or threads must be held before TotalView can release the group. That is, the barrier is satisfied when
TotalView has held all of the indicated processes or threads.

From the Modify Barrier Point dialog (accessed by right-clicking on the barrier point and choosing Properties),
choose an option from the Satisfaction group drop-down:

CLI: dbarrier -stop_when_hit

Scope Stopped Threads

Group Stops all threads in the current thread’s control group.

Process Stops all threads in the current thread’s process.

Thread Stops only this thread.

dbarrier-stop_when_done

Barrier Points Hitting a Barrier Point 121

Setting and Managing Action Points (Breakpoints)

Figure 43, Satisfaction Set properties

Control and Share settings hold at the process level. For multi-threaded programs, to hold the threads at the
barrier point, use the Workers setting, which holds at the thread level.

In TotalView, the workers group are the threads in the main() routine, which is added to the Share group. For more
information on worker threads and how TotalView creates groups, see the section “How TotalView Creates
Groups” in the chapter “About Groups, Processes and Threads” in the Classic TotalView User Guide.

When you set a barrier point, TotalView places it in every process in the share group.

Hitting a Barrier Point
If you run one of the processes or threads in a group and it hits a barrier point, the Process and Threads View dis-
plays Stopped in the Process State column for that process’s or thread’s entry.

If you create a barrier and all the process’s threads are already at that location, TotalView won’t hold any of them.
However, if you create a barrier and all of the processes and threads are not at that location, TotalView holds any
thread that is already there.

Scope Held Processes or Threads

Control The default. Holds all processes.

Share Holds all the processes that share the same image as
the current executable where the barrier point is set.

Workers Holds only this thread.

CLI: dstatus

Barrier Points Releasing Processes from Barrier Points 122

Setting and Managing Action Points (Breakpoints)

The Processes & Threads view displays which threads or processes are being held when you select “Process Held”
or “Thread Held” in the “group by” dialog:

Releasing Processes from Barrier Points
TotalView automatically releases processes and threads from a barrier point when they hit that barrier point and
all other processes or threads in the group are already held at it.

Changing Settings and Disabling a Barrier Point
Setting a barrier point at the current PC for a stopped process or thread holds the process there. If, however, all
other processes or threads affected by the barrier point are at the same PC, TotalView doesn’t hold them.
Instead, TotalView treats the barrier point as if it were an ordinary breakpoint.

TotalView releases all processes and threads that are held and which have threads at the barrier point when you
disable the barrier point (by right-clicking on it in the Action Points tab and selecting Disable).

Using Barrier Points
Because threads and processes are often executing different instructions, keeping threads and processes
together is difficult. The best strategy is to define places where the program can run freely and places where you
need control. This is where barrier points come in.

To keep things simple, this section only discusses multi-process programs. You can do the same types of opera-
tions when debugging multi-threaded programs.

Why breakpoints don’t work (part 1)

CLI: ddisable

Barrier Points Using Barrier Points 123

Setting and Managing Action Points (Breakpoints)

If you set a breakpoint that stops all processes when it is hit and you let your processes run using the Group > Go
command, you might get lucky and have all of your threads reach the breakpoint together. More likely, though,
some processes won’t have reached the breakpoint and TotalView will stop them wherever they happen to be. To
get your processes synchronized, you would need to find out which ones didn’t get there and then individually
get them to the breakpoint using the Process > Go command. You can’t use the Group > Go command since this
also restarts the processes stopped at the breakpoint.

Why breakpoints don’t work (part 2)

If you set the breakpoint’s property so that only the process hitting the breakpoint stops, you have a better
chance of getting all your processes there. However, you must be careful not to have any other breakpoints
between where the program is currently at and the target breakpoint. If processes hit these other breakpoints,
you are once again left to run processes individually to the breakpoint.

Why single stepping doesn’t work

Single stepping is just too tedious if you have a long way to go to get to your synchronization point, and stepping
just won’t work if your processes don’t execute exactly the same code.

Why barrier points work

If you use a barrier point, you can use the Group > Go command as many times as it takes to get all of your pro-
cesses to the barrier, and you won’t have to worry about a process running past the barrier.The Root Window
shows you which processes have hit the barrier, grouping all held processes under Breakpoint in the first
column.

Barrier Point Illustration

Creating a barrier point tells TotalView to hold a process when it reaches the barrier. Other processes that can
reach the barrier but aren’t yet at it continue executing. One-by-one, processes reach the barrier and, when they
do, TotalView holds them.

When a process is held, it ignores commands that tell it to execute. This means, for example, that you can’t tell it
to go or to step. If, for some reason, you want the process to execute, you can manually release it using the dun-
hold command.

When all processes that share a barrier reach it, TotalView changes their state from held to released, which
means they no longer ignore a command that tells them to begin executing.

The following figure shows seven processes that are sharing the same barrier. (Processes that aren’t affected by
the barrier aren’t shown.)

 First block: All seven processes are running freely.

CLI: dfocus p dunhold -process

Barrier Points Using Barrier Points 124

Setting and Managing Action Points (Breakpoints)

 Second block: One process hits the barrier and is held. Six processes are executing.

 Third block: Five of the processes have now hit the barrier and are being held. Two are executing.

 Fourth block: All processes have hit the barrier. Because TotalView isn’t waiting for anything else to
reach the barrier, it changes the processes’ states to released. Although the processes are
released, none are executing.

Figure 44, Running to Barriers

For more information on barriers, see Barrier Points on page 116.

RELATED TOPICS
dhold dhold in "CLI Commands" in the TotalView Reference Guide

dunhold dunhold in "CLI Commands" in the TotalView Reference Guide

Controlling an Action Point’s Width About an Action Point’s Width: Group, Process or Thread 125

Setting and Managing Action Points (Breakpoints)

Controlling an Action Point’s Width
You can control an action point’s scope, or width, i.e. whether it stops a group of processes, a single process
(which includes all its threads), or a single thread. For example, in a multi-threaded program, you might not want
to stop other threads when a thread hits a breakpoint.

About an Action Point’s Width: Group, Process or Thread
For a single-process, single-threaded program, an action point’s width is irrelevant: when the thread hits the
breakpoint, it stops. For a multi-process, multi-threaded program, it is useful to finely control what to stop. You
can stop all the threads in a group, all the threads in a process, or just that single thread.

 Group: All the processes a program creates are placed into a control group.

When an action point is set to Stop Group, and a thread reaches the breakpoint, all running threads in all
processes in the group stop.

 Process: A process can contain any number of threads.

The default setting for action points is Stop Process, which stops all the running threads in the process con-
taining the thread that hit the breakpoint. This is useful in a multi-process program in which you might want
to let the other processes continue running.

 Thread: A thread is a single unit of execution created by your program.

When an action point is set to Stop Thread, the thread that first executes to this breakpoint stops. The other
threads retain their current states, running or stopped.

Setting the Action Point’s Width
Select When hit from the context menu, and choose Stop Group, Stop Process, or Stop Thread.

Controlling an Action Point’s Width Action Point Width and Process/Thread State 126

Setting and Managing Action Points (Breakpoints)

Figure 45, Action Points width context menu

The Stop column displays the selected width:

Note: The “When hit” context menu is only available for breakpoints.

Action Point Width and Process/Thread State
To see how this works, let’s add some breakpoints of varying widths. The program here has four processes, each
with three threads.

In the Processes & Threads view, we’ll group by Thread State and Source Line and display the List View ().

 Using the default Process Width:

 Set a breakpoint with the default width of Process.

Controlling an Action Point’s Width Action Point Width and Process/Thread State 127

Setting and Managing Action Points (Breakpoints)

 Select Go from the debug toolbar.

Each of the four processes had a thread (#2) that hit the breakpoint (although it’s also possible that another
thread in a process would have had time to hit the breakpoint before it was stopped).

The first thread that hit the breakpoint stopped all other threads at whatever point they had reached.

Controlling an Action Point’s Width Action Point Width and Process/Thread State 128

Setting and Managing Action Points (Breakpoints)

 Using Thread Width:

We’ll change the breakpoint’s width to Thread, and run the program again.

Each of the eight threads that could encounter the breakpoint did, and are stopped. The other four continue
to run, i.e. the threads hitting the breakpoint do not stop other threads.

Controlling an Action Point’s Width Action Point Width and Process/Thread State 129

Setting and Managing Action Points (Breakpoints)

 Using Group Width:

We’ll change the breakpoint’s width to Group and run the program again. When a thread hits the breakpoint,
all threads in all processes in the group stop.

Selecting Go again resumes all the threads until one hits the breakpoint, at which point, all other threads are
again stopped. We can continue to run the program until all eight threads have passed the breakpoint. With
no more threads to hit the breakpoint, all the threads are left running.

Managing and Diving on Action Points Sorting 130

Setting and Managing Action Points (Breakpoints)

Managing and Diving on Action Points
The Action Points view contains the following columns:

 Enable toggle: Checkbox that enables or disables the breakpoint.

 ID: The Action Point ID. Use this ID when you need to refer to the action point. Like process and
thread identifiers, action point identifiers are assigned numbers as they are created. The ID of the
first action point created is 1; the second ID is 2, and so on. These numbers are never reused
during a debugging session.

 Type: The type of Action Point, in this case breakpoint.

 Stop: The Action Point’s width, i.e. its scope or what it should stop: all threads in the process, all
threads in all processes in the group, or just the first thread to reach the breakpoint. The default is
Process.

 File: The source file in which the breakpoint is set.

 Line: The line at which the breakpoint is set in the source file.

Sorting
You can sort any column by clicking the column header. A sorted column displays a down or up arrow to indicate
its sorting order:

Managing and Diving on Action Points Diving 131

Setting and Managing Action Points (Breakpoints)

Diving
To dive on an Action Point, double-click it in the Action Points view. This displays its location in the source file in the
Source view.

NOTE: You cannot dive on a watchpoint since it does not point to a location in source but rather is
directly mapped to a memory location.

Deleting, Disabling, and Suppressing
You can either completely delete or just disable an Action Point if you think you may use it later.

 Deleting an Action Point

Delete one or more Action Points in several ways:

 In the Source view, launch the context menu by right-clicking on the Action Point’s line num-
ber and selecting Delete.

Managing and Diving on Action Points Deleting, Disabling, and Suppressing 132

Setting and Managing Action Points (Breakpoints)

 In the Action Points menu, launch the context menu by right-clicking on the Action Point
and selecting Delete.

 Clicking on the Action Point in the Source view. This toggles an Action Point on or off.

 Using the Delete key on your keyboard.

NOTE: You can select multiple Action Points and use any of these methods to delete
several at once. The Action Points > Delete All main menu item deletes all
breakpoints.

 Disabling and Enabling an Action Point

A disabled Action Point displays as a dimmed icon.

 In the Source view, access the context menu by right-clicking on the Action Point and select-
ing Disable or Enable:

 In the Action Points menu:

Managing and Diving on Action Points Deleting, Disabling, and Suppressing 133

Setting and Managing Action Points (Breakpoints)

Access the context menu by right-clicking on the Action Point and selecting Disable or Enable:

Use the Enable/Disable checkbox toggle:

NOTE: Tip: You can use disabled breakpoints to flag places in your code for quick navi-
gation. Create a breakpoint, disable it, and then dive on it to display that line of
code in the Source view.

Both the Source view and the Action Points view display the state of an Action Point:

 Suppressing Action Points

Managing and Diving on Action Points Saving and Loading Action Points 134

Setting and Managing Action Points (Breakpoints)

The main Action Points menu has a toggle menu item Suppress All.

Toggling this item on, as shown, effectively disables all existing action points. If the code is run, threads will
not stop at any action points. Although you can create new action points (and delete existing ones), the new
action points too will be effectively disabled. Toggling this item off restores all action points to the state they
were in when suppressed. Any new action points added are set as enabled.

Saving and Loading Action Points
Both the main Action Points menu, and the action points context menu, have Save, Save As, and Load menu
items.

 Save saves the action points and their state to a file with the default name
program_name.TVD.v4breakpoints, where program_name is the name of your program. The file is
created if need be, and an existing file of the same name is overwritten. Use Save As to save under
a different name.

 Save As and Load open a dialog:

This dialog lets you choose the directory and file from which to load or save the action points.

Managing and Diving on Action Points Saving and Loading Action Points 135

Setting and Managing Action Points (Breakpoints)

You can save and load action point files with Suppress All turned on. Actions points are saved with the state
they would have when unsuppressed. Loaded action points are suppressed, but regain their saved state
when Suppress All is turned off.

More on Action Points Using the CLI Creating Barrier Points, Evalpoints, and Watchpoints 136

Setting and Managing Action Points (Breakpoints)

More on Action Points Using the CLI
The CLI provides access to all action point features using the command line view.

Creating Barrier Points, Evalpoints, and Watchpoints
 A breakpoint stops execution of processes and threads that reach it. See Breakpoints on page 85.

 An evalpoint executes a code fragment when it is reached. See Evalpoints on page 97.

 An watchpoint monitors a location in memory and stops execution when a provided condition is
met. See Watchpoints on page 107.

 A barrier point synchronizes a set of threads or processes at a location. See Barrier Points on
page 116.

Identifying Icons for All Types of Action Points

In the Action Points view, evalpoints, barrier points and watchpoints created in the CLI display as ,

, and icons.

In the Source view, evalpoints and barrier points show up as line numbers with the same colors, for example,

 identifies an evalpoint. Watchpoints do not appear in the Source view because they represent memory
locations, not lines in the code.

In the Action Points view, these action points look like this:

More on Action Points Using the CLI Creating Barrier Points, Evalpoints, and Watchpoints 137

Setting and Managing Action Points (Breakpoints)

Breakpoints

The CLI provides additional parameters for breakpoints, some of which are not yet supported in the UI. For exam-
ple, you can provide a specific function or address on which to set a breakpoint:

 Set a breakpoint directly on a function:
dbreak my_function
Sets a breakpoint on the function my_function. If multiple files include this function, this call sets a break-
point in all the files.

Note: For breakpoints on functions of the same name that span multiple files, the UI currently displays each
breakpoint with the same ID. Deleting one deletes all breakpoints that match that ID.

 Set a breakpoint directly on an address:
dbreak -address 0x2b0b7aad1470
Sets a breakpoint at a specific address, useful to observe a specific location in memory.

Evalpoints

A breakpoint with associated code is an evalpoint. When your program reaches an evalpoint, TotalView executes
the code. Evalpoints can contain print statements, commonly used in debugging, but, unlike print statements,
don’t require that you recompile your program. They also let you patch your programs and route around code
that you want replaced—for example, to branch around code that you don’t want your program to execute or to
add new statements.

For example:

 Print the value of result:
dbreak 597 -e { printf("The value of result is %d\n", result) };
Note that this breakpoint does not stop execution. Evalpoints do exactly what you tell them to do; you don’t
have to stop program execution just to observe print statement output.

 Skip some code:
dbreak 50 -e {goto 63};
Any thread that reaches this breakpoint transfers to line 63.

 Stop a loop after a certain number of iterations:
dbreak 597 -e { if ((i % 100) == 0)
{
printf("The value of i is %d\n", i);

CLI: dbreak breakpoint-expr
CLI: dbreak -address addr

CLI: dbreak line-number -e expr

More on Action Points Using the CLI Creating Barrier Points, Evalpoints, and Watchpoints 138

Setting and Managing Action Points (Breakpoints)

$stop;
}
;
Uses programming language statements and a built-in debugger function to stop a loop every 100 iterations.
It also prints the value of i.
dbreak 597 -e { $count 100 };
In contrast, this evalpoint just stops the program every 100 times a statement is executed.

Watchpoints

To create a watchpoint expression with the CLI, use the -e argument on the dwatch command, and enter an
expression. The expression is compiled into interpreted code that is executed each time the watchpoint triggers.

TotalView has two variables used exclusively with watchpoint expressions:

 $oldval: The value of the memory locations before a change is made.

 $newval: The value of the memory locations after a change is made.

NOTE: Watchpoints are not available on the Mac OS X platform.

For example:
{if ($newval > 2) $stop}
This watchpoint triggers when the updated value of the variable arg_count equals more than two.

CLI: dwatch -e expr

More on Action Points Using the CLI Creating Barrier Points, Evalpoints, and Watchpoints 139

Setting and Managing Action Points (Breakpoints)

At this point, you can see in the Local Variables view that arg_count equals 1:

The watchpoint is now reflected in the Action Points view with the watchpoint icon:

More on Action Points Using the CLI Creating Barrier Points, Evalpoints, and Watchpoints 140

Setting and Managing Action Points (Breakpoints)

When you advance the program by choosing Go, Next or Step, for instance, TotalView stops at this watchpoint
when the value of arg_count has been incremented past 2.

 The Processes & Threads view reports the Process State stopped at this watchpoint.

 The Source view identifies the location of the PC.

 The Local Variables view reports that arg_count’s value is at 3.

 The Command Line view reports that watchpoint 2 has been hit.

 The Action Point view displays a pale yellow background to identify the stopped watchpoint.

Barrier Points

In a multi-threaded, multi-process program, threads and processes are often executing different instructions, so
cannot be easily synchronized to all stop at the same breakpoint. Use a barrier breakpoint to hold processes
and threads that reach the barrier point until all have reached it. With a barrier point, you can use the Group >
Go command as many times as it takes to get all of your processes to the barrier, and you won’t have to worry
about a process running past it.

RELATED TOPICS
Breakpoints dbreak in the TotalView Reference Guide

Evalpoints dbreak in the TotalView Reference Guide

Barrier points dbarrier in the TotalView Reference Guide

Watchpoints dwatch in the TotalView Reference Guide

More on Action Points Using the CLI Saving Action Points to a File Using the CLI 141

Setting and Managing Action Points (Breakpoints)

The Processes and Threads pane displays which processes have hit the barrier, grouping all held processes
under Breakpoint in the first column.

You can fine-tune how a barrier works to define additional elements to stop when a barrier point is satisfied or a
thread encounters a barrier point. You can also incorporate an expression into a barrier point, similar to an
evalpoint.

To insert a default barrier point:
dbarrier 123
This barrier stops each thread in all processes in the control group when it arrives at line 123. After all processes
arrive, the barrier is satisfied, and TotalView releases all processes.

Saving Action Points to a File Using the CLI
You can save a program’s action points to a file. TotalView then uses this information to reset these points when
you restart the program. When you save action points, TotalView creates a file named
program_name.TVD.v4breakpoints, where program_name is the name of your program.

Start TotalView with the -sb option (see “TotalView Command Syntax” in the TotalView Reference Guide) to automati-
cally save your breakpoints.

At any time, you can restore saved action points.

CLI: dbarrier line-number

CLI: dactions -save filename

CLI: dsetTV::auto_save_breakpoints

CLI: dactions -load filename

RELATED TOPICS
The TV::auto_save_breakponts variable TV::auto_save_breakponts in “TotalView Variables”

in the TotalView Reference Guide

The TV::auto_load_breakpoints variable TV::auto_load_breakpoints in "TotalView Variables”
in the TotalView Reference Guide

More on Action Points Using the CLI Suppressing and Unsuppressing Action Points 142

Setting and Managing Action Points (Breakpoints)

Suppressing and Unsuppressing Action Points
Action points can be suppressed and unsuppressed as described in Deleting, Disabling, and Suppressing on
page 130. The CLI commands for this are:

CLI: dactions –suppress

CLI: dactions –unsuppress

142

 Examining and Editing Data

 Viewing Data in TotalView on page 143

 About Expressions on page 144

 The Call Stack, Local Variables, and Registers Views on page 147

 The Data View on page 161

 The Array View on page 185

 Using the CLI to Examine Data on page 200

Viewing Data in TotalView 143

Examining and Editing Data

Viewing Data in TotalView
TotalView is rich with features to analyze your program’s data.

The Call Stack, Local Variables View, Data View, and Register View

The Call Stack, the Local Variables, Data View, and Registers view all work together to provide views of your data at
different points of your running program.

The Local Variables view, Registers view, and the Data View work in concert to display your program’s data in
detail.

The Local Variables view displays blocks of variables local to the selected call stack frame. When you move
through the backtrace, change the thread of focus or the PC changes, the local variables in the Local Variables
view update. The same is true of the Register view which displays the value of general purpose registers and float-
ing point registers local to a call stack frame.

The Data View enables you to create expressions in order to analyze your data. Add new variables to the Data
View by either entering the variable name in the Add New Expression field in the Data View, right clicking on the
variable and selecting Add to Data View or Add to New Data View from the context menu, or by simply drag-
ging the variable name from the Local Variables view to the Data View. Both views update variable values as your
program runs.

The Data View automatically transforms and aggregates your data so that it displays in a way that makes it easy to
examine. If you are using Standard Template Library (STL) types, this is especially useful and is analogous to the
customized STLView in Classic TotalView.

Edit a wide range of data while debugging your programs, such as variable type and value. If a variable is complex,
dive on it to get more detailed information. See Diving on Variables.

About Expressions 144

Examining and Editing Data

About Expressions
Either directly or indirectly, accessing and manipulating data requires an evaluation system. When your program
(and TotalView, of course) accesses data, it must determine where this data resides. The simplest data lookups
involve two operations: looking up an address in your program’s symbol table and interpreting the information
located at this address based on a variable’s datatype. For simple variables such as an integer or a floating-point
number, this is straightforward.

Looking up array data is slightly more complicated. For example, if the program wants my_var[9], it looks up the
array’s starting address, then applies an offset to locate the array’s 10th element. In this case, if each array ele-
ment uses 32 bits, my_var[9] is located 9 times 32 bits away.

In a similar fashion, your program obtains information about variables stored in structures and arrays of
structures.

Structures complicate matters slightly. For example ptr->my_var requires three operations: extract the data con-
tained within address of the my_var variable, use this information to access the data at the address being
pointed to, then display the data according to the variable’s datatype.

Accessing an array element such as my_var[9] where the array index is an integer constant is rare in most pro-
grams. In most cases, your program uses variables or expressions as array indices; for example, my_var[cntr] or
my_var[cntr+3]. In the latter case, TotalView must determine the value of cntr+3 before it can access an array
element.

Here is an illustration showing TotalView accessing the my_var array in the three ways discussed in this section:

About Expressions Using C++ 145

Examining and Editing Data

Figure 46, Data View: Accessing Array Elements

Using C++
The TotalView expression system is able to interpret the way you define your classes and their inheritance hierar-
chy. For example, assume that you have the following declarations:

class Cylinder : public Shape { public:
...
};
Figure 47shows the second expression of cylinder cast to the type struct Shape, and TotalView properly evalu-
ating the expression as the new type to show struct Shape's data members.

About Expressions Using C++ 146

Examining and Editing Data

Figure 47, Class Casting

The Call Stack, Local Variables, and Registers Views The Call Stack View 147

Examining and Editing Data

The Call Stack, Local Variables, and Registers
Views
The Call Stack, Local Variables and Registers views work together to display the stack and all the arguments,
local variables, and registers associated with the selected frame.

Figure 48, Call Stack, Local Variables, and Registers Views

The Call Stack View
The Call Stack View shows the backtrace of the thread that is currently in focus and stopped, i.e., the Thread of
Interest or TOI, bolded in the Process and Thread View:

To view the backtrace from a different thread, make a new thread selection in the Process and Thread View.

The Call Stack, Local Variables, and Registers Views The Local Variables View 148

Examining and Editing Data

Note that the Call Stack displays the language and name of the program or function in

focus:

The Information tab on the Call Stack displays additional detail about the location of the stopped thread
and the selected frame.

The info panel displays which function the selected stack frame is in, the source file containing that function, the
line number where the PC is, and the Frame Pointer (FP) for the selected frame.

The Local Variables View
The Local Variables view displays all the arguments and local variables associated with the selected frame in the
Call Stack.

NOTE: Global variables are not displayed in the Local Variables view. To view them, add them to the
Data View. See Entering a New Expression into the Data View on page 165.

The Local Variable’s default three columns display each variable’s Name, Type and Value at the time that the
thread stopped. (You can customize the visible columns in the view, turning on Thread ID and Address, similar to
the Data View. See Customizing the Data View for more information.)

For example, in Figure 49, for selected function snore, the local variables display under the associated scope or
program block.

The Call Stack, Local Variables, and Registers Views The Local Variables View 149

Examining and Editing Data

Figure 49, Local Variables display under the associated program block

You can expand and collapse the list of variables in a block by clicking the left arrow next to it in the Local Vari-
ables pane:

Displaying information in tooltips:

Placing your cursor over a variable displays its value in a tooltip:

Hovering your cursor over a block displays the file and function in which it appears:

The Call Stack, Local Variables, and Registers Views The Local Variables View 150

Examining and Editing Data

Viewing complex variable structures:

Select the right arrow to display the substructures in a complex variable.

Note that you can also dive on a complex variable that you have copied to the Data View. See Entering a New
Expression into the Data View on page 165.

Editing the value of a variable:

If your data’s value is not what you expect, you can change a variable’s value to test a fix. The new value changes
the source code for that session only.

Double-click on the value in the Value column and enter a new value.

For example, this edit changes the value of me from 1 to 2:

The Call Stack, Local Variables, and Registers Views The Registers View 151

Examining and Editing Data

Copy a variable definition from the TotalView UI to another document by right-clicking on the variable and
selecting Copy.

TotalView copies the variable as a tab-separated string so that pasting it into another program results in columns
of data delineated by a tab.

The Registers View
The Registers view is not open by default. To open it, from the Window menu, choose Views > Registers.

The Registers view displays the contents of CPU registers for the selected frame in the Call Stack. Viewing a differ-
ent stack frame in the Call Stack reloads the values to those relevant to that frame.

The view includes two collapsible sections, General Purpose Registers and Floating Point Registers.

NOTE: Register abbreviations and meanings are architecture-specific. See Architectures in the
TotalView Reference Guide. Note that if your platform doesn’t support dedicated floating point
registers, all registers will appear in the General Purpose Register section.

The Registers view displays each register’s Name and Value at the time that the thread stopped. If the value has
changed, it appears in bold, similar to The Data View.

The Call Stack, Local Variables, and Registers Views Viewing Call Stack Data 152

Examining and Editing Data

For example, here the general purpose rax and rdx registers’ values have changed:

The value has two parts: the hexadecimal and the annotation in parentheses.

Running threads display no registers, so the view will be empty if all threads are running.

Edit or Cast a Register

To edit the value of a register or cast it to a different type, add it to the Data View. Similar to the Local Variables
view, add a register to the Data View by dragging and dropping it into the view or right-clicking on the register
entry and selecting Add to Data View.

Once in the Data View, you can edit the data by double-clicking on the value and entering a new one, or cast the
data by double-clicking the existing type and entering a new one.

Viewing Call Stack Data
Let’s consider the Source View alongside the Call Stack. The Source View displays your program’s source code
and any breakpoints you have set. The highlighted yellow line and arrow shows where execution has stopped.

In this example, the program is within the block that starts at line 680, with the Program Counter, or PC, stopped
at line 681. At that scope is a local struct variable, timeout, displayed in the Local Variables view.

RELATED TOPICS
Using the dwhere command to view registers dwhere in the TotalView Reference Guide

The Data View The Data View on page 161

Casting to another type in the Data View Casting to Another Type on page 172

The Call Stack, Local Variables, and Registers Views Viewing Call Stack Data 153

Examining and Editing Data

Figure 50, The Local Variables view displays local variables for the TOI

The Call Stack view uses icons to identify several functions as C++. Other possible icons include Fortran or C. If a
language is displayed, then there is debug information for that frame, so, for instance, __libc_start_main and
_start have no debug information, and the source is not available. If selected, “Source not available” displays.

Figure 51, Source not available

The Call Stack, Local Variables, and Registers Views Viewing Data in Fortran 154

Examining and Editing Data

Refocusing the Source View updates the Local Variables View

Move up and down in the stack trace in the Call Stack View and select a new frame to refocus the Source View to
the selected source for that routine. Figure 52 illustrates that moving down the stack to snore_or_leave
updates the Local Variables view with new local values and arguments.

Figure 52, Refocusing the Frame

Viewing Data in Fortran
This section demonstrates the display of data when debugging a Fortran program. The behavior of the Call Stack
and Local Variables view is essentially the same, but the display differs to reflect Fortran-defined data.

Viewing Modules and Their Data

Fortran 90 lets you place functions, subroutines, and variables inside modules. You can then include these mod-
ules elsewhere with a USE command. This command makes the names in the module available in the using
compilation unit, unless you either exclude them with a USE ONLY statement or rename them. This means that
you don’t need to explicitly qualify the name of a module function or variable from the Fortran source code.

When debugging this kind of information, you need to know the location of the function being called, so
TotalView uses the following syntax when it displays a function contained in a module:

modulename‘functionname

The Call Stack, Local Variables, and Registers Views Viewing Data in Fortran 155

Examining and Editing Data

Variable names are handled similarly:

modulename‘variablename

NOTE: This assumes that TotalView is able to determine the module in which the function or variable
resides. Sometimes the information the compiler makes available is insufficient and some-
times, although a function uses a module, TotalView is unable to determine that a module is
the source of the function, and so is unable to properly qualify the names. In this case names
are displayed unqualified as a local function with local variables.

The above qualified syntax can be used with the Lookup File or Function view, and with the dprint command in
the CLI:

dprint modulename‘variablename

Figure 53 illustrates some of the points made above.

Figure 53, Display of Fortran Module Data

The Call Stack, Local Variables, and Registers Views Viewing Data in Fortran 156

Examining and Editing Data

The qualified subroutine name appears in the Call Stack, and the qualified variable names appear in the Local
Variables view. Note also that the init() routine can be called from main without qualification because of the USE
statement.

Common Blocks

For each common block defined in the scope of a subroutine or function, TotalView creates an entry in that func-
tion’s common block list. The names of common block members have function scope, not global scope. If you
select the function in the Call Stack, the common blocks and their variables appear in the Local Variables view.
From there, of course, you can move those variables to the Data View to create expressions or cast a type, for
example.

Figure 54 illustrates the handling of common blocks.

Figure 54, Fortran Common Blocks

Fortran 90 User-Defined Types

A Fortran 90 user-defined type is similar to a C structure. TotalView displays a user-defined type as type(name),
the syntax used in Fortran 90 to create a user-defined type.

For example, the following code fragment defines two user types, foo and bar:
type foo
integer ifoo
end type foo

The Call Stack, Local Variables, and Registers Views Viewing Data in Fortran 157

Examining and Editing Data

type bar
integer mdarray(2,3,4,5)
end type bar
And this code creates variables of these types, one a simple type, one an 20-dimensional array, and one a
pointer:
type (bar), target :: just_a_bar
type (foo), dimension(20), target :: foo_array
type (foo), pointer, dimension(:) :: foo_p
TotalView displays these in the Local Variables view, which you can then add to the Data View if you wish to create
expressions or cast a type:

Fortran 90 Deferred Shape Array Types

Fortran 90 lets you define deferred shape arrays and pointers. The actual bounds of a deferred shape array are
not determined until the array is allocated, the pointer is assigned, or, in the case of an assumed shape argument
to a subroutine, the subroutine is called.

The following example shows the type of a deferred shape array of real data with no defined lower or upper
bounds:
real, allocatable, dimension(:) :: aa1

Figure 55, Fortran User-Defined Types

The Call Stack, Local Variables, and Registers Views Viewing Data in Fortran 158

Examining and Editing Data

Here is the unallocated array displayed in the Data View:

As you run the program, the array is allocated at line 303 below. Note that the type has been modified in the Data
View.

Fortran 90 Pointer Types

A Fortran 90 pointer type points to scalar or array types.

TotalView implicitly handles slicing operations that set up a pointer or assumed shape subroutine argument so
that the indices and values it displays in the Local Variables view and Data View are the same as in the code. For
example, this code sets up and assigns an array and a pointer to that array:

integer, target, dimension(5,2:10) :: ia21,ia22

Figure 56, Fortran Deferred Shape Array, unallocated

Figure 57, Fortran Deferred Shape Array

The Call Stack, Local Variables, and Registers Views Viewing Data in Fortran 159

Examining and Editing Data

integer, pointer, dimension(:,:) :: ip21, ip22
ip21 => ia21(::2, ::2)
Figure 58 displays the original array ia21 and its pointer ip21 in the Data View.

Figure 58, Original Fortran Array

Figure 59 illustrates the pointer ip21 representing a slice of the ia21 array after the assignment of the pointer.

Figure 59, Fortran Pointer Representing an Array Slice

Fortran Parameters

A Fortran PARAMETER defines a named constant. If your compiler generates debug information for parameters,
they are displayed in the same way as any other variable. However, some compilers do not generate information
that TotalView can use to determine the value of a PARAMETER. This means that you must make a few changes
to your program if you want to see this type of information. For Fortran 90, you can define variables in a module
that you initialize to the value of these PARAMETER constants; for example:

INCLUDE ‘PARAMS.INC’
MODULE CONSTS
SAVE
INTEGER PI_C = PI
...
END MODULE CONSTS

The Call Stack, Local Variables, and Registers Views Viewing Data in Fortran 160

Examining and Editing Data

The PARAMS.INC file contains your parameter definitions. You then use these parameters to initialize variables in
a module. After you compile and link this module into your program, the values of these parameter variables are
visible. For Fortran 77, you can achieve the same results if you make the assignments in a common block and
then include the block in main(). You can also use a block data subroutine to access this information.

Figure 60 assigns a parameter to a local variable for display in the Data View:

Figure 60, Fortran Parameters

If the compiler provides enough information to look at parameters directly, then you can add the parameter
directly to the Data View, like so:

Figure 61, Fortran Parameters, added to Data View

The Data View Adding Variables to the Data View 161

Examining and Editing Data

The Data View
The Data View enables you to create expressions in order to analyze your data.

Once a variable is displayed in the Data View, you can manipulate it in multiple ways in order to clearly see what
your data is doing.

 Adding Variables to the Data View on page 161

 Diving on Variables on page 167

 Working with Complex Variables in the Data View on page 168

 Editing an Expression on page 171

 Displaying Arrays on page 175

 Viewing Individual Elements in an Array of Structures on page 176

 Customizing the Data View on page 183

 Controlling STL Data Transformation on page 181

 Using the CLI to Examine Data on page 200

Adding Variables to the Data View
Once you have started your program and it has stopped at a breakpoint or by using a stepping command, the
Local Variables view populates with local data from whatever stack frame is selected in the Call Stack. The Source
view is also refocused on the source file associated with the selected frame.

Creating a new expression allows you to manipulate your data in multiple ways in order to clearly see your data’s
structure, type, and value at any given point in your program’s execution. To add expressions, i.e. variables, to the
Data View, use one of these methods:

 Add to the Data View from the Local Variables View using either the context menu or by dragging
and dropping.

 Create a New Expression from within the Data View.

 Move a Variable from the Source View to the Data View using the context menu.

 Entering a New Expression into the Data View.

The Data View Adding Variables to the Data View 162

Examining and Editing Data

NOTE: Because global variables are not displayed in the Local Variables view, add them to the Data
View by typing them in directly. See Entering a New Expression into the Data View on
page 165.

Add to the Data View from the Local Variables View

Use the Local Variables view to add variables to the Data View, either by using the context menu or by dragging
and dropping. Choose Add to Data View to add to the existing view, or Add to New Data View to create a new
Data View window.

Figure 62, Add to the Data View using the context menu

Figure 63, Add to the Data View by dragging from Local Variables

As you step through your program and the focus changes, the variables are evaluated using the scope in which
they were added rather than the current scope.

The Data View Adding Variables to the Data View 163

Examining and Editing Data

Figure 64, Evaluated expressions use the original scope

In Figure 64, the variable x was added to the Data View at two different scopes from two different, selected stack
frames, so reflects a different value.

If a variable goes out of scope, an error is displayed:

Move a Variable from the Source View to the Data View

Use the context menu in the Source view to add a variable to the Data View.

Right-click on the variable and select Add to Data View.

The Data View Adding Variables to the Data View 164

Examining and Editing Data

You can also select an entire valid expression:

The expressions are added to the Data View:

Create a New Expression from within the Data View

You can add a new expression to the Data View in multiple ways:

 Dragging and dropping an existing expression to the row [Add a new Expression].

Here, the int i is added, resulting in two copies in the Data View.

 Using the Dive in New Data View or Duplicate features, available from the context menu.

Right-click on an expression in the Data View and select Dive in New Data View or Duplicate. See Dive in
New Data View on page 170 or Duplicating an Expression on page 166.

 Entering a new expression manually. See Entering a New Expression into the Data View.

The Data View Adding Variables to the Data View 165

Examining and Editing Data

Entering a New Expression into the Data View

Because variables are actually expressions— in fact, lvalues that evaluate to a memory location— you can enter
an expression into the Name field to troubleshoot data problems.

To add a new expression, double-click on Add New Expression in the Data View and begin typing.

Some examples:

 View just a sub-element of a structure, by entering it as a new expression:

A new expression is added. This is the same as diving on the sub-element.

 Increment a variable:

 Add or subtract variables, assuming some relationship:

The Data View Adding Variables to the Data View 166

Examining and Editing Data

 Add a global variable. Type the variable name into the Name column and TotalView automatically
enters the type and value.

The value updates in the Data View as you run through your program.

Operating on Multiple Expressions

You can select multiple expressions to perform an operation on, such as to duplicate, dive, or delete. Hold down
the Ctrl key and select the expressions, then right-click for the context menu.

Duplicating an Expression

Choosing Duplicate from the context menu makes a copy of the variable and places it at the bottom of the exist-
ing Data View. You can duplicate any variable, including a single scalar variable, an entire complex variable, or a
subelement of a complex variable.

If the duplicated expression had been “dived on,” the dive stack is also duplicated. See Diving on Variables.

The Data View Diving on Variables 167

Examining and Editing Data

Deleting an Expression

Delete an expression using the context menu and selecting Delete or by clicking Delete on your keyboard.

NOTE: For complex variables, deleting a single element deletes the top-level variable from the Data
View. You cannot delete a single element of a structure or an array.

Diving on Variables
If your data is complex, you can dive on it to drill down for detail on its subelements. For example, dive on an
expression or variable in the Data View to view a nested data item at the top level. The nested item could be a
structure member, an element in an array, or the target of a pointer.

Dive on a variable via a context menu or use the Dive button. From the context menu, choose from several
options related to diving:

 Dive. Available only for complex variables when a subelement is selected. This option dives into the
subelement, replacing its parent element in the view. See Diving on Complex Variables on
page 169.

 Dive in New Data View. Select this option to launch a new Data View window containing the
variable. This may be useful if you want multiple windows in which to view different elements of a
variable. See Dive in New Data View on page 170.

 Dive In All. This option is relevant only for arrays. See The Dive In All Command on page 176.

 Redive or Undive. These options are enabled only when a dive has already been performed. See
Redive and Undive on page 170.

The Data View Working with Complex Variables in the Data View 168

Examining and Editing Data

Working with Complex Variables in the Data View
View, edit, and analyze complex variables using the Data View.

 Viewing Elements of Complex Variables on page 168

 Diving on Complex Variables on page 169

Viewing Elements of Complex Variables

Select the right arrow to display the substructures in a complex variable.

If your complex variable has nested structures, these display in the Data View:

The Data View Working with Complex Variables in the Data View 169

Examining and Editing Data

View the nested structures by selecting the down arrow:

Diving on Complex Variables

The subelements of complex structures can be analyzed by diving on them. Diving on a subelement of a com-
pound structure replaces the top level structure with the subelement, on which you can further dive (if, for
instance, you have an array of structures), so that you can edit and manipulate it as needed.

Right-click on a subelement in the Data View and select Dive, or click the Dive arrow ().

The Data View Working with Complex Variables in the Data View 170

Examining and Editing Data

The new expression replaces the selected expression.

Dive in New Data View

You may wish to retain the parent variable in the Data View rather than replacing it in the view. Choosing Dive in
New Data View from the context menu instead of Dive creates a new Data View containing the selected element.
The new window is numbered, starting with “<1>.” If you undock or redock one of the Data View windows, you can
view both the parent element and the subelement on which you dived side-by-side.

You can also duplicate a variable, which makes a copy and places it at the bottom of the existing Data View. See
Duplicating an Expression on page 166.

Redive and Undive

When diving on compound structures, use the Redive and Undive arrows () to move up and down the
dive stack.

 After diving on an element in a compound variable, the Undive arrow () becomes active, and
Undive is available in the context menu. Choosing Undive moves one level back up the dive stack.

 After choosing Undive, the Redive arrow () becomes active. Rediving repeats the previous dive.

When diving on arrays or other variables with multiple, nested structures, you can use Dive In All to display a sin-
gle field of a structure in an array of structures as a new array across all the structures. See The Dive In All
Command.

The Data View Editing an Expression 171

Examining and Editing Data

Editing an Expression
Edit an expression in the Data View by double-clicking inside any field to make the text editable. You can enter any
expression into the Name field, changing a variable’s name, type, or value.

Dereferencing a Pointer

When you dive on a variable, it is not dereferenced automatically. To dereference it so you can see its target, edit
the expression. For example, for this pointer to a string:

Double-click in the Name column to make the text editable, and then dereference the pointer:

The Data View displays the variable’s value:

For argv, i.e. a pointer to a pointer, dereference it twice.

Changing the Value of Data

If your data’s value is not what you expect, you can change a variable’s value to test a fix. The new value changes
the source code for that session only. If you kill the program and restart it, the previous value is reinstated.

Double-click on the value in the Value column and enter a new value.

The Data View Editing an Expression 172

Examining and Editing Data

For example, this example changes the value of x from 10 to 100:

Casting to Another Type

You may need to cast your data to a type that is more meaningful. Enter the cast code in the Type field. Here are
some examples.

Casting to an Array in the Data View

Cast a variable into an array by adding an array specifier to the Type declaration. For example, adding [3] to a
variable declared as an int changes it into an array of three ints.

Press Enter to cast the variable:

Depending on the array declaration, TotalView displays arrays differently. See Displaying Arrays on page 175.

Displaying an Allocated Array

Display an allocated array. Using malloc() (in C and C++) creates a pointer to allocated memory. For example:
dynStrings = (char**) malloc (10 * sizeof(char*));
Because the debugger doesn’t know that this is a pointer to an array of ints, to display the array, change its type
to $string *[10].

The Data View Editing an Expression 173

Examining and Editing Data

Then click the down arrow to display your array of 10 strings.

Built-InTypes

TotalView provides a number of predefined types. These types are preceded by a $. You can use these built-in
types anywhere you can use those defined in your programming language. These types are also useful in debug-
ging executables with no debugging symbol table information. The following table describes the built-in types:

Table 3: TotalView Built-in Types

Type String Language Size Description

$address C void* Void pointer (address).

$char C char Character.

$character Fortran character Character.

$code C architecture-
dependent

Machine instructions.The size used is the number of bytes
required to hold the shortest instruction for your computer.

$complex Fortran complex Single-precision floating-point complex number.Thecomplex
types contain a real part and an imaginary part, which are
both of type real.

$complex_8 Fortran complex*8 Areal*4-precision floating-point complex number.Thecom-
plex*8 types contain a real part and an imaginary part, which
are both of type real*4.

$complex_16 Fortran complex*16 Areal*8-precision floating-point complex number.Thecom-
plex*16 types contain a real part and an imaginary part,
which are both of type real*8.

The Data View Editing an Expression 174

Examining and Editing Data

$double C double Double-precision floating-point number.

$double_preci-
sion

Fortran double
precision

Double-precision floating-point number.

$extended C architecture-
depen-
dent;oftenlon
g double

Extended-precision floating-point number. Extended-preci-
sion numbers must be supported by the target architecture.
In addition, the format of extended floating point numbers
varies depending on where it's stored. For example, the x86
register has a special 10-byte format, which is different than
the in-memory format. Consult your vendor’s architecture
documentation for more information.

$float C float Single-precision floating-point number.

$int C int Integer.

$integer Fortran integer Integer.

$integer_1 Fortran integer*1 One-byte integer.

$integer_2 Fortran integer*2 Two-byte integer.

$integer_4 Fortran integer*4 Four-byte integer.

$integer_8 Fortran integer*8 Eight-byte integer.

$logical Fortran logical Logical.

$logical_1 Fortran logical*1 One-byte logical.

$logical_2 Fortran logical*2 Two-byte logical.

$logical_4 Fortran logical*4 Four-byte logical.

$logical_8 Fortran logical*8 Eight-byte logical.

$long C long Long integer.

$long_long C long long Long long integer.

$real Fortran real Single-precision floating-point number.When using a value
such as real, be careful that the actual data type used by your
computer is not real*4 or real*8, since different results can
occur.

$real_4 Fortran real*4 Four-byte floating-point number.

$real_8 Fortran real*8 Eight-byte floating-point number.

$real_16 Fortran real*16 Sixteen-byte floating-point number.

Table 3: TotalView Built-in Types

Type String Language Size Description

The Data View Displaying Arrays 175

Examining and Editing Data

Displaying Arrays
The declaration of an array can include a lower and upper bound separated by a colon (:).

For C or C++, the default lower bound is 0; for Fortran, it is 1. Further, C and C++ use brackets to define an array,
while Fortran uses parentheses. In the following example, an array of ten integers is declared in C and then in
Fortran:
int a[10];
integer a(10)
The elements of the array range from a[0] to a[9] in C, while the elements of the equivalent Fortran array range
from a(1) to a(10).

When an array’s lower bound is the default, the UI displays only the extent (that is, the number of elements in the
dimension). Consider the following Fortran array declaration:
integer a(1:7,1:8)

$short C short Short integer.

$string C char Array of characters.

$void C long Area of memory.

$wchar C platform-
specific

Platform-specific wide character used by wchar_tdata types

$wchar_s16 C 16 bits Wide character whose storage is signed 16 bits (not currently
used by any platform)

$wchar_u16 C 16 bits Wide character whose storage is unsigned 16 bits

$wchar_s32 C 32 bits Wide character whose storage is signed 32 bits

$wchar_u32 C 32 bits Wide character whose storage is unsigned 32 bits

$wstring C platform-
specific

Platform-specific string composed of $wchar characters

$wstring_s16 C 16 bits String composed of $wchar_s16 characters (not currently
used by any platform)

$wstring_u16 C 16 bits String composed of $wchar_u16 characters

$wstring_s32 C 32 bits String composed of $wchar_s32 characters

$wstring_u32 C 32 bits String composed of $wchar_u32 characters

Table 3: TotalView Built-in Types

Type String Language Size Description

The Data View Viewing Individual Elements in an Array of Structures 176

Examining and Editing Data

Since both dimensions of this array use Fortran’s default 1 lower bound, TotalView displays the data type using
only the extent of each dimension, as follows:
integer(7,8)
If an array declaration doesn’t use the default lower bound, TotalView displays both the lower and upper bound
for each dimension. For example, this Fortran array is displayed in TotalView the same way it is declared:
integer a(-1:5,2:10)

Viewing Individual Elements in an Array of Structures
If you have an array of structures data object, you may wish to analyze a particular field of the structure in all the
elements of the array; this would require expanding all the elements and then scrolling through the expanded
array and visually searching through for that single field.

To avoid this painstaking process, use the Dive-In-All command.

The Dive In All Command

The Dive-In-All command can display a single field of a structure in an array of structures as a new array across
all the structures. This makes it much easier to look at the values of only that field.

RELATED TOPICS
Cast a variable to an array Casting to an Array in the Data View on page 172

Viewing an array in the Array View The Array View on page 185

The Data View Viewing Individual Elements in an Array of Structures 177

Examining and Editing Data

In Figure 65, the array of structures strucArray in the left pane contains 20 structures, far more than the Data
View can actually display. After you select the Dive in All command with element a selected, TotalView creates a
new array in the Data View that contains all these a elements across all structures, shown in the right pane.

Accessing Dive In All

To Dive-In-All on a variable, right-click a field in a single element of the array in the Data View, and choose Dive In
All (short for “dive in all elements”) from the context menu.

Figure 65, Dive In All creates a new array to visualize a single element across structures

The Data View Viewing Individual Elements in an Array of Structures 178

Examining and Editing Data

Figure 66, Dive In All context menu

NOTE: If the array created after a Dive-In-All command is a scalar type, you can display more detail by
right-clicking it and selecting Show Statistics. See Viewing Array Statistics on page 187.

Displaying a Fortran Structure

Consider the following Fortran definition of an array of structures:
type i_c
 integer r
 complex c
end type i_C

type(i_c), target :: rc2(3,4)

The Data View Viewing Individual Elements in an Array of Structures 179

Examining and Editing Data

With the array in the Data View, select an r element, right click, then select Dive In All. TotalView displays all of the
r elements of the rc2 array as if they were a single array.

Displaying a C++ Structure

The Dive in All command can also display the elements of a C array of structures as arrays. Figure 68 shows a
unified array of structures and a multidimensional nested array in a structure.

Figure 67, Displaying a Fortran Structure

The Data View Viewing Individual Elements in an Array of Structures 180

Examining and Editing Data

Here, the array of structures foo contains a nested array of structures b, visually represented like so:

 The array strucArray[:].foo visually represents an array composed of every foo element in each of
the 20 strucArray objects.

 Drilling further, the array strucArray[:].foo[:].b visually represents an array composed of every b
element in the array of structures strucArray[:].foo.

Figure 68, Displaying C Structures and Arrays

The Data View Controlling STL Data Transformation 181

Examining and Editing Data

 Using Dive In All to Deference a Pointer in an Array of Pointers

If you have an array of pointers that you first want to dereference to see the values, use Dive In All on a pointer
to create a new array of the dereferenced value. In Figure 69, ptrArray is an array of pointers of integers. Using
Dive In All on a single pointer creates a new array of just integers in which each element of the original array is
dereferenced.

Figure 69, Dive In All used to dereference a pointer in an array of pointers

Controlling STL Data Transformation
When a debugger displays a variable, it usually relies on the definitions of the data used by your compiler.
TotalView’s Data View, however, automatically transforms your data in an aggregated list or array view that makes
it easier to examine.

This is particularly important for C++ STL (Standard Template Library) types that use abstractions such as struc-
tures, classes, and data types, including lists, maps, and vectors.

By default, TotalView transforms STL types, including strings, vectors, lists, maps, multimaps, sets, and multisets.
This behavior is part of the TotalView Type Transformation Facility (TTF) that provides tools for customizing how
you view data.

The Data View Controlling STL Data Transformation 182

Examining and Editing Data

Viewing untransformed data

If you do need to look at the untransformed data structures, use the CLI’s dset command to set the TV::ttf vari-
able to false:

For example, here is how your compiler sees a vector compiled using the GNU C++ compiler (g++):

Figure 70, An Untransformed Vector

Most of the information is generated by the STL template and, in most cases, provides little value for analysis. In
addition, the STL does not aggregate the information in a useful way.

TotalView solves this problem by transforming the data so that you can easily examine it. For example, here is the
transformed vector, using TotalView’ default TTF settings:

CLI: dset TV::ttf { true | false }

The Data View Customizing the Data View 183

Examining and Editing Data

Figure 71, A Transformed Vector

You can also create transformations for other STL containers.

Customizing the Data View

Customizing the Displayed Columns

Customize the columns to display by right-clicking anywhere on the column header and selecting the column
names.

You can also create a new Data View for more options in viewing data. See Dive in New Data View on page 170.

RELATED TOPICS
General information on creating custom type
transformations

"Creating Type Transformations" in the TotalView Reference
Guide

Transforming C++ types “Displaying C++ Types” in the Classic TotalView User Guide in
the product distribution at <installdir>/
<totalview_version>/doc/pdf or on the TotalView
Documentation website, Displaying C++ Types.

https://help.totalview.io/classicTV/current/HTML/index.html#page/User_Guides/DisplayingCplusplusTypes.html#ww139065

The Data View Customizing the Data View 184

Examining and Editing Data

The Data View Drawer

The Data View drawer, available by double-clicking on its bottom banner (see Drawers for more information on
working with drawers) displays detailed information about the selected expression. If more than one expression
is selected, the first is used to propagate information in the drawer.

In addition to some of the detail available in the view itself, the drawer displays the language and the lookup scope.
The lookup scope is the scope of the program where the lookup was initiated.

The lookup scope consists of the executable image, the file in the image, and function name in the file. The Block
Line field is typically the first line number in the program's lexical block in which the lookup occurred. The Block ID
is merely a synthetic name that TotalView assigns to every lexical block in a program. Hovering your cursor over
Block ID displays more detailed description in a tool tip.

The Array View Adding Arrays to the Array View 185

Examining and Editing Data

The Array View
The Array View provides a way to visualize array data, examine array statistics, and slice arrays for easier analysis.

The Array View may be open when you launch TotalView; if not, open it from Windows > Views > Array View. You
can also open it by adding an array to it.

 Adding Arrays to the Array View on page 185

 Viewing Array Statistics on page 187

 Visualizing Array Data on page 189

 Configuring Arrays on page 194

Adding Arrays to the Array View
Depending on your settings, the Array View may open when you launch TotalView. To open the view, right-click on
an array in either the Local Variables view or the Data View, and select Add to Array View - Statistics, Visualize.

Figure 72, Adding a variable to the Array View from the Local Variables view

Use the menu to add any number of arrays to the Array View.

If you add multiple arrays to the Array View, they appear in the Variables dropdown so you can select them at any
point:

The Array View Array Statistics and Visualization 186

Examining and Editing Data

NOTE: Not all arrays are valid for statistics or visualizing, in which case, the menu item Add to Array
View - Statistics, Visualize is not enabled. For example, pointers to allocated memory must be
cast to an array before adding to the Array View.

The Array View Toolbar

The Array View toolbar provides access to array statistics, visualization, and the ability to slice arrays. Its display
defaults to a view of an array’s statistics. See Viewing Array Statistics.

The toolbar displays:

 The thread of focus

 Whatever type the array is set to. The type could reflect the original type of the array when it was
added to the Array View or the edited type from the configuration dialog box.

Hover over the array name in the toolbar array dropdown to get a tooltip with more information on the array:

 The array slice and stride if there is one.

By default, TotalView displays all elements in the array, for instance, [:] for a single-dimension array, [:][:] for
a 2D array, and so on. If an array has been sliced, its slice will display in the toolbar.

 A dropdown to select either Statistics or a visualization tool.

 The Array Configuration Options toolbar button (), which opens the Array Configuration dialog
where you can slice arrays. See Configuring Arrays.

Array Statistics and Visualization
The Statistics dropdown of the Array View provides access to statistical information generated from the array
values.

The Array View Array Statistics and Visualization 187

Examining and Editing Data

See

 Viewing Array Statistics

 Visualizing Array Data

Viewing Array Statistics

Figure 73, The Array Statistics view

The above is a one-dimensional floating point array composed of 20,000 elements, identified under the Count
statistic. See Array Statistics Detail for information on all displayed statistics.

Array statistics are also available through the CLI, as switches to the dprint command.

RELATED TOPICS
Cast a variable to an array Casting to an Array in the Data View on page 172

The Array View Array Statistics and Visualization 188

Examining and Editing Data

Array Statistics Detail

If you have added a slice (see Slicing Arrays), these statistics describe only the information currently being dis-
played; they do not describe the entire array. For example, if an array includes positive values, but a slice omits
array values that are more than 0, the median value is negative even though the entire array’s real median value is
more than 0.

 Count

The total number of displayed array values. If you’re displaying a floating-point array, this number doesn’t
include NaN or Infinity values.

 Zero Count

The number of elements whose value is 0.

 Sum

The sum of all the displayed array’s values.

 Minimum

The smallest array value.

 Maximum

The largest array value.

 Median

The middle value. Half of the array’s values are less than the median, and half are greater than the median.

 Mean

The average value of array elements.

 Standard Deviation

The standard deviation for the array’s values.

 Quartiles, First and Third

Either the 25th or 75th percentile values. The first quartile value means that 25% of the array’s values are
less than this value and 75% are greater than this value. In contrast, the third quartile value means that 75%
of the array’s values are less than this value and 25% are greater.

 Lower Adjacent Value

Slicing array data Slicing Arrays on page 195

Displaying arrays Displaying Arrays on page 175

RELATED TOPICS

The Array View Array Statistics and Visualization 189

Examining and Editing Data

This value provides an estimate of the lower limit of the distribution. Values below this limit are called outli-
ers. The lower adjacent value is the first quartile value minus the value of 1.5 times the difference between
the first and third quartiles.

 Upper Adjacent Value

This value provides an estimate of the upper limit of the distribution. Values above this limit are called out-
liers. The upper adjacent value is the third quartile value plus the value of 1.5 times the difference between
the first and third quartiles.

 Denormalized Count

A count of the number of denormalized values found in a floating-point array. This includes both negative
and positive denormalized values as defined in the IEEE floating-point standard. Unlike other floating-point
statistics, these elements participate in the statistical calculations.

 Infinity Count

A count of the number of infinity values found in a floating-point array. This includes both negative and pos-
itive infinity as defined in the IEEE floating-point standard. These elements do not participate in statistical
calculations.

 NaN Count

A count of the number of NaN (not a number) values found in a floating-point array. This includes both sig-
naling and quiet NaNs as defined in the IEEE floating-point standard. These elements do not participate in
statistical calculations.

 Checksum

A checksum value for the array elements.

Visualizing Array Data

To visualize your data, choose either Histogram Plot, Line Plot, or Surface Plot from the Statistics dropdown.

Different datasets can require different views to display their data. For example, you could use a histogram to see
the distribution of a dataset, or lines and surface plots to view trends or slope.

The examples here display all the data for an array. To display a subset, you can slice the data. See Slicing Arrays.

The Array View Array Statistics and Visualization 190

Examining and Editing Data

Histogram View

By default, the view displays 10 bins, or buckets:

Figure 74, Array View > Histogram

Change the number of bins to evaluate a different dataset distribution:

The Array View Array Statistics and Visualization 191

Examining and Editing Data

Line Plot View

To display your data as x and y coordinate pairs, use the Line Plot view. This view is useful to plot trend lines in
your one-dimensional datasets. For example:

Figure 75, Array Data > Line Plot

Note that for higher-dimensional datasets in the Array View, the Line Plot displays a flattened, one-dimensional
dataset. For example, given an array like this:
[[31 12 43][42 1 16
[0 42 0]]
The Line Plot displays a flattened array, like so:
[31 12 43 42 1 16 0 42 0]

Surface Plot View

The Surface plot displays two-dimensional datasets as a surface in two or three dimensions. The dataset’s array
indices map to the first two dimensions (X and Y axes) of the display, and the values map to the height (Z axis).
This can be useful to show a relationship across three variables and to observe trends in two-dimensional
datasets.

NOTE: Surface plot display is supported only on Linux-x86-64, Linux ARM64, and macOS, and
requires OpenGL version 2.1 or greater.

The Array View Array Statistics and Visualization 192

Examining and Editing Data

Figure 76, Array View: Surface Plot View

Use the plot controls to rotate or zoom the display.

Updating the View

After advancing your program, the view does not update automatically. To refresh the display, click the Update

button ().

Changing the Thread of Focus

if you change the program’s thread of focus, it’s not reflected in the array displayed in the Array View, which dis-
plays the original thread of focus when the array was added to the view. You can, however, maintain multiple
arrays in the Array View that are tied to different threads of focus.

Zooming Into Data

To view some data in detail, use the zoom toolbar, which displays when you place your cursor inside the graph:

The Array View Array Statistics and Visualization 193

Examining and Editing Data

 To zoom in, either:

 Use the Plus button ().

 Drag an area to view:

TotalView zooms in on your data:

Figure 77, Array View > zooming in on data

To undo the zoom, either double-click on the graph or select the Reset Axes home button () or the Zoom out

button ().

If you know the indices you want to examine, you can also slice the array to view a subsection; see Slicing Arrays.

The Array View Configuring Arrays 194

Examining and Editing Data

Configuring Arrays
Use the Array Configuration Options dialog to isolate and view a smaller portion of data by either slicing the array
or adding strides as well as editing the array’s type.

To open this dialog, select the Array Configuration button () from the Array View.

Figure 78, Array Configuration Options dialog

Here, enter a slice and/or stride to view a portion of an array.

Selecting different arrays in the Array View automatically updates the display in the Array Configuration Options
dialog. The table in the dialog also updates to reflect the number of dimensions in the array.

RELATED TOPICS
Slicing arrays to visualize or see statistics for a
subsection of an array

Slicing Arrays on page 195

Viewing arrays in the Data View Working with Complex Variables in the Data View on
page 168

Displaying arrays Displaying Arrays on page 175

The Array View Configuring Arrays 195

Examining and Editing Data

Slicing Arrays

Consider a two-dimensional array containing 400 elements.

Slice the array to visualize or generate statistics on a sub-portion. To slice, open the Array Configuration Options
dialog.

The general form for a slice definition is:

lower_bound:upper_bound[:stride]

For example, for a 2D array, [0:9][0:9] would use only elements 0 through 9 of each dimension, cutting the num-
ber of elements used to calculate the statistics to 100. Enter these values into the Start and End fields:

The Array View Configuring Arrays 196

Examining and Editing Data

Click Apply to immediately view your changes in the Array View.

NOTE: Clicking Apply applies your changes, but keeps the dialog box open so you can continue to
test different slices. Click OK to apply your changes and close the dialog box. Select Reset to
cancel your changes.

Adding a Stride

The default value for stride is 1; that is, show all elements in the range. If a stride of 2 were added to one of the
dimensions, the statistical calculations would use every other element, cutting it to 50.

Slicing or adding a stride to an array is reflected in both the Statistics view and the plot views:

Figure 79, Sliced arrays display in all views

Statistics view Plot Line view

The Array View Configuring Arrays 197

Examining and Editing Data

To view or analyze the stats of just the second dimension of the array, you could hold the first dimension steady,
for example, [0:0][:].

In this different 2D array, the slice includes all elements from the first dimension, but only the 10th element from
the second dimension.

Histogram view Surface Plot view

Figure 79, Sliced arrays display in all views

The Array View Configuring Arrays 198

Examining and Editing Data

Slicing Using the Zoom Tool

You can also use the zoom tool to select an x-axis or y-axis range. Here is a 20,000-element, single-dimensional
array in which we want to see just the values from 5,000 to 10,000.

First, select the slice by dragging:

This slices the display, like so:

The Array View Configuring Arrays 199

Examining and Editing Data

Casting to Another Type in the Array View

Use the Array Configuration Options dialog to cast your array to another type. Enter the new type in the Type
field. The new type is immediately reflected in the Array View.

If you have cast the type to some other shape array in the Local Variables view or Data View, the edited data is dis-
played in the Array View. For example, editing this array in the Data View is then reflected when the array is added
to the Array View:

Using the CLI to Examine Data Changing the Display of Data 200

Examining and Editing Data

Using the CLI to Examine Data
To access all the functionality of Classic TotalView, you can use the CLI.

NOTE: For this release of TotalView, using functionality in the CLI that is not present in the UI does
not update the UI.

Changing the Display of Data

Viewing STL Datatypes

By default, TotalView transforms STL types. If you do need to look at the untransformed data structures, use the
CLI’s dset command to set the TV::ttf variable to false:

Following pointers in an STL data structure to retrieve values can be time-consuming. By default, TotalView only
follows 500 pointers. You can change this by altering the value of the TV::ttf_ max_length variable.

Changing Size and Precision

You can change the format that TotalView uses to display a variable’s value using one of a series of TV::data_for-
mat variables that control the precision for simple data types.

For example, you can set how many character positions a value uses when TotalView displays it and how many
numbers to display to the right of the decimal place. You can also customize how to align the value and if num-
bers should be padded with zeros or spaces.

CLI: dset TV::ttf { true | false }

RELATED TOPICS
General information on creating custom type
transformations

"Creating Type Transformations" in the TotalView Reference
Guide

Transforming C++ types “Displaying C++ Types” in the chapter “Examining and Editing
Data and Program Elements” in the Classic TotalView User
Guide

CLI: To obtain a list of variables that you can set, type “dset TV::data_format*”.

Using the CLI to Examine Data Displaying Variables 201

Examining and Editing Data

Displaying Variables

Displaying Program Variables

Display local and global variables using dprint:

For example, dprint j returns the value of j:
j = 0x00000005 (5)

Dereferencing Variables Automatically

In most cases, you want to see what a pointer points to, rather than the value of its variable. Use the CLI to auto-
matically dereference pointers.

Dereferencing pointers is especially useful when you want to visualize the data linked together with pointers,
since it can present the data as a unified array. Because the data appears as a unified array, you can use
TotalView’array manipulation commands to view the data.

Automatic dereferencing can occur in the following situations:

 When TotalView initially displays a value.

 When you dive on a value in an aggregate or structure.

RELATED TOPICS
Data format CLI variables A list of the TotalViewdata format variables in the TotalView Ref-

erence Guide

CLI: dprint variable
This command lets you view variables and expressions without having to select or find them.

CLI: dwhere, dup, and dprint
Use dwhere to locate the stack frame, use dup to move to it, and then use dprint
to display the value.

CLI: TV::auto_array_cast_bounds
TV::auto_deref_in_all_c
TV::auto_deref_in_all_fortran
TV::auto_deref_initial_c
TV::auto_deref_initial_fortran
TV::auto_deref_nested_c
TV::auto_deref_nested_fortran

Using the CLI to Examine Data Displaying Variables 202

Examining and Editing Data

Displaying Areas of Memory

You can display areas of memory using hexadecimal, octal, or decimal values:

 An address

 A pair of addresses

All octal constants must begin with 0 (zero). Hexadecimal constants must begin with 0x.

203

 The Processes and Threads View

The Processes and Threads view displays detail about all processes and threads in your debugging session,
allowing you to organize them into aggregate groupings based on attributes. This chapter focuses on the view
in the UI and how it updates and displays, depending on focus and program execution. For a deeper dive into
debugging multi-threaded, multi-process programs, see Part III, Parallel Debugging.

This chapter includes:

 Processes and Threads View Basics on page 204

 Customize the Display on page 206

 The Processes and Threads View in Relation to Other Views on page 210

 Displaying a Thread Name on page 211

 Process and Thread Attributes on page 215

Processes and Threads View Basics 204

The Processes and Threads View

Processes and Threads View Basics
In Figure 80, the processes and threads are grouped by share group, process state, function, thread ID, and
thread state.

 There are four processes and a total of 12 threads (not all visible).

 The share group is the set of processes executing the same program, and the executable program
name is indicated in its attribute.

 The focus is on thread 1.1, thread 1 of process 1, as indicated by its bold format.

 The thread of focus determines the display in the Call Stack, Local Variables (VAR) view, the Source
view, and the Data view.

Figure 80, Processes and Threads Tree View

Processes and Threads View Basics 205

The Processes and Threads View

Note that the status of processes and threads is highlighted by colored icons for easy identification. The “Mixed”
icon identifies a process whose threads are in different states.

RELATED TOPICS
Controlling how action points works with pro-
cesses and threads

Action Points on page 268 in the Preferences chapter

Action Point Properties for controlling whether it
stops a group of processes, a single process
(which includes all its threads), or a single thread.

Controlling an Action Point’s Width on page 124

Customize the Display 206

The Processes and Threads View

Customize the Display
Customizing the Display using “Group By”

If the “Select process or thread attributes to group by” panel is not visible, click the gear icon () to open it.

Checked selections appear in the View pane in the order that they appear in the “Group by” list. To change the
order, select items in the list and use the up and down arrows. Reset restores the initial order. To hide the list,
double-click its banner; redisplay it by double-clicking on the banner again or clicking the gear icon.

The Processes & Threads View Layout

 The Description column shows the aggregate groupings that are active for the current program
state.

 The columns #P and #T show the number of processes and threads with a given set of attributes.
For example, three threads from different processes are stopped at a breakpoint in the snore
function.

 The Members column summarizes the processes and threads in ptlist format. For example, for
the snore function, p3.1, p2.2, p4.2 indicates that thread 1 of process 3 and thread 2 of
processes 2 and 4 are stopped at this function.

For more information on ptlists, see "Compressed List Syntax (ptlist)" in the TotalView Reference Guide.

Customizing the Process and Threads View Pane

Control which columns to display by right-clicking in the banner and selecting column names to display or hide.

Customize the Display 207

The Processes and Threads View

View a tabular representation of process and thread state by clicking the tabular icon ():

Figure 81, Process and Threads Tabular View

Customize the Display 208

The Processes and Threads View

Sort the display by clicking on any of the column headers in either the tree or tabular view. To change the sort
order between descending and ascending, click the column header again.

Figure 82, Reordering the Process and Threads View

Here, the table has been sorted by Function, identified by the down arrow in the Function column header.

Customize the Display 209

The Processes and Threads View

Customize multiple views using the three View icons (). Each view is independent and can have any
combination and order of attributes. This provides a convenient way to have several different views into your
program.

Figure 83, Process and Threads – Viewing Different Attributes

The Processes and Threads View in Relation to Other Views 210

The Processes and Threads View

The Processes and Threads View in Relation
to Other Views
The Processes and Threads view displays the state of the processes under debugger control at any given
moment. The view updates each time one or more processes moves to some other part of the code. If you have
set breakpoints, often some number of threads will be stopped at one, but even if all threads are running, this
state will be shown in the view.

Figure 84, Relationships of Processes and Threads, Source, Call Stack, and Data Views

If you are displaying the Thread IDs, one of the lines is highlighted in bold (Thread ID 8.3 above). That line deter-
mines the display in the Source view, as well as the Call Stack, Local Variable (VAR), and Data views.

If you are not displaying individual thread IDs, the line representing the aggregate that contains the current
thread of focus is bold. If you double-click on another line, the display changes to represent the source location,
call stack, and data values pertinent to that line.

Displaying a Thread Name Thread Names in the UI 211

The Processes and Threads View

Displaying a Thread Name
In complex, multi-threaded programs with perhaps thousands of threads, it may be useful to name certain
threads, for instance, if particular threads are dedicated to performing special functions. This can be helpful when
sorting or identifying threads in your programs.

If you set a thread name in your program, the name is displayed in the TotalView UI:

 In the Processes & Threads view (if Thread Name is selected in the Group By pane)

 In TotalView’s title bar

To display a thread name in the TotalView UI, first set the name in your program using the pthread_setnam-
e_np() method.

For example:

int rc = pthread_setname_np(thread, "MyThreadName");
Unless explicitly set by the program, threads are not named.

Thread Names in the UI
When set, thread names are displayed in both the title bar and the Processes & Threads view, when Thread
Name is selected in the Group by pane:

RELATED TOPICS

TV::thread properties TV::thread in the TotalView Reference Guide

Thread names displayed in the UI Thread Names in the UI on page 211

dstatus options relating to thread names dstatus in the TotalView Reference Guide

Displaying a Thread Name Thread Names in the UI 212

The Processes and Threads View

This program sets these thread names:

 pthread_mutex_lock(&name_mutex);
 int rc;
 if (!first_in)
 {
 first_in = true;
 rc = pthread_setname_np(thread, "Primary");
 }
 else
 rc = pthread_setname_np(thread, "Secondary");
The first thread to enter a function is named “Primary”, and all subsequent threads are called “Secondary.”

Figure 85, Thread names in the UI

Displaying a Thread Name Thread Properties 213

The Processes and Threads View

Also relevant to thread names are three other properties, the systid (the target system thread ID) and the utid /
ktid (“thread user ID” / “thread kernel ID”). You can display these in the Processes & Threads view by selecting
them in the Group by pane:

For more information, see Thread Properties and Process and Thread Attributes.

Thread Properties
TV::thread includes these properties relevant to thread naming:

 thread_name: The name given to a thread by the application.

 thread_ktid: The kernel thread id)

 thread_utid: User thread ID (pthread_t)

These properties are read-only, so can be accessed but not set.

Thread Options on dstatus
The command dstatus has options and properties related to thread names:

 -thread_name: Displays any thread names in a program, if they exist

 Properties on the -group_by option:

Displaying a Thread Name Thread Options on dstatus 214

The Processes and Threads View

 systid: Either the user thread ID (utid) or the kernel thread ID (ktid) if no utid exists

 utid_ktid: "utid / ktid" or just ktid if no utid exists.

 tname: thread name or "<unnamed>" if no thread name exists.

Process and Thread Attributes Thread Options on dstatus 215

The Processes and Threads View

Process and Thread Attributes

Table 4: Processes and Threads Attribute Descriptions

Property Applies to Description

Control Group Processes Control group of the processes in your program. Processes in the same pro-
gram are placed in the same control group by default. If there is only one
control group in the debug session, this property is omitted from the display.

Share Group Processes Share group of the processes within a control group. Processes that are run-
ning the same main executable are placed in the same share group by default.

Hostname Processes The hostname or IP address of where the process is running.

Process State Processes The process execution state, e.g., Nonexistent, Running, Stopped, Breakpoint,
Watchpoint, etc. The process execution state derives from the execution state
of the threads it contains.

Thread State Threads The thread execution state, e.g., Running, Stopped, Breakpoint, Watchpoint, etc.

Function Threads The function name of the location of the stopped thread. Displays the function
name or “<unknown address>” if the thread is running or the function name is
not known.

Source Line Threads The source code line of the location of the stopped thread. Displays the source
file name and line number, or “<unknown line>” if the thread is running or the
source line is not known.

PC Threads The program counter of the location of the stopped thread. Displays the pro-
gram counter value, or “<unknown address>” if the thread is running.

Action Point ID Threads The action point ID (breakpoint or watchpoint) of the location of the stopped
thread. Displays “ap(id)”, where id is the action point ID, or “none” if the thread is
not stopped at an action point.

Stop Reason Threads More detailed information on why the process/thread has stopped.

Process ID Processes The debugger process ID (dpid) of the process. Displays dpid.

Thread ID Threads The dpid and debugger thread ID (dtid) of the thread. Displays dpid.dtid.

Thread Index Threads The thread index part of the Thread ID. For example, if the Thread ID is 3.2, the
Thread Index is 0.2.

Process Held Processes The ‘hold’ state of the process. This may be because of an explicit hold request,
or because the process is waiting at a barrierpoint.

Process and Thread Attributes Thread Options on dstatus 216

The Processes and Threads View

The attributes drawer has three buttons for changing the order of attributes. Changing the order matters only for
attributes that are selected. The order of selected attributes controls the order they appear in the Processes and
Threads view.

Thread Held Threads The ‘hold’ state of the thread. This may be because of an explicit hold request,
or because the thread is waiting at a barrierpoint.

Replay Mode Processes The Replay state (Replay or Record) of a process that has Replay enabled.

System TID Thread The systID, which is the user thread ID (user TID) if it exists. Otherwise, the sys-
tem kernel ID (Kernel TID).

User_TID/
Kernel_TID

Thread User thread ID / Kernel thread ID

Thread Name Thread The name of the thread, if set. If unset, “unnamed” is displayed.

Button Action

Moves the selected attribute up the list. If it passes another selected attribute, this changes
the display in the Processes and Threads view.

Moves the selected attribute down the list. If it passes another selected attribute, this
changes the display in the Processes and Threads view.

Resets the initial order and the initial selection of attributes.

Table 4: Processes and Threads Attribute Descriptions

Property Applies to Description

217

 Debugging Python

 Overview on page 218

 Python Debugging Requirements on page 219

 Starting a Python Debugging Session on page 221

 Debugging Python and C/C++ with TotalView on page 223

 Viewing and Comparing Python and C/C++ Variables on page 226

 Leveraging Other Debugging Technologies for Python Debugging on page 228

 Supported Python Extension Technologies for Stack Transformations on page 229

Overview 218

Debugging Python

Overview
The Python language is easily extensible with C and C++ code. This enables Python applications to access legacy
algorithms, specialized hardware, and to perform highly specialized computing.

C/C++ Python extensions enable developers to "glue" together different parts of a program, creating a mixed lan-
guage application. Understanding and debugging the interdependencies and data exchange between language
barriers in a mixed language application is a real challenge for developers.

TotalView supports debugging Python extensions, shows a clean set of stack frames across the language barriers,
and allows both Python and C/C++ variables to be examined and compared.

The debugger does not yet support setting breakpoints and stepping actual Python code as it does with C and
C++, but it excels at making it easy to set up your debug session, examine the data exchange between the lan-
guage barriers, and debug your C/C++ code.

NOTE: The TotalView installation includes some example Python/C mixed language programs in
installdir/toolworks/totalview.version/platform/examples/PythonExamples. The
README.TXT file in the PythonExamples subdirectory details requirements and instructions
for building and executing these programs.

Python Debugging Requirements Python Version 219

Debugging Python

Python Debugging Requirements

Python Version
To debug C/C++ Python extensions, install the debugging information for your version of the Python interpreter.
This provides the necessary insight into the Python data structures for the debugger to extract Python stack and
variable information.

Packaged versions of the debugging symbol interpreter can be installed with:

CentOS/RedHat Enterprise/Fedora Linux:
sudo yum install python-devel
sudo debuginfo-install glibc
sudo debuginfo-install python

Ubuntu:
sudo apt-get install python-dev
sudo apt-get install python-dbg

Limitations and Extensions:
The following functionality and limitations exist:

 Python version: Python 2.7, and Python 3.5 and above.

 Python compiled with debug information:

Debug information is required. If you are building your own Python version, the easiest way is to use the
-- with-pydebug flag:
configure --with-pydebug
This option incorporates the -g option (debug information) and the -O0 option (no optimization). Optimiza-
tions can prevent TotalView from obtaining Python function, line, number, variable, or frame information, in
which case it displays "Optimized out.” See Building and Using a Debug Version of Python for details on
building a debug version of the interpreter.

For a pre-built Python distribution, check the documentation, installation guide and any configure files for
information on how it was compiled.

 Python type support: Current support for Python types includes scalar types int, float, long,
complex, str, and Numpy ndarray. Future support will include other sequence, mapping, and
set types.

https://pythonextensionpatterns.readthedocs.io/en/latest/debugging/debug_python.html

Python Debugging Requirements Limitations and Extensions: 220

Debugging Python

 Python extension technologies: Current support for the many Python extension technologies
includes:

 SWIG to perform stack frame transformations

 ctypes to call functions in DLLs or shared libraries

 pybind11 for operability between C++11 and Python

Support for other Python extensions will be added to the product.

 Python distributions: Python debugging support has been tested on Python distributed with
various operating systems. Support of the Enthought Python 3.5 distribution has also been
validated. The Anaconda Python distribution is not supported due to the unavailability of debug
information with the distribution.

If you have feedback or feature requests on Python debugging in TotalView, please let us know at https://
totalview.io/support.

https://www.enthought.com
https://anaconda.org/
https://totalview.io/support
https://totalview.io/support

Starting a Python Debugging Session Limitations and Extensions: 221

Debugging Python

Starting a Python Debugging Session
To set up a Python and C/C++ debugging session with TotalView:

1. Set up a new Program Session.

 Enter the path to the debug Python interpreter into the File Name field.

 Enter the name of the Python file to run as an argument to the interpreter in the Arguments
field,

 Select the checkbox under Python Debugging, “Enable call stack filtering for Python”, then
click Load Session.

Figure 86, Set up a Python Debugging Session

NOTE: The Python-specific option “Enable call stack filtering for Python” ensures that
the call stack will display Python calls. Once selected, this option is saved with
the session and will be active on next session load.

For faster startup, provide the information as command line arguments to TotalView, for example:

Starting a Python Debugging Session Limitations and Extensions: 222

Debugging Python

totalview --args /usr/bin/python test_python_types.py
2. Set breakpoints in C/C++ code and begin debugging.

To set a breakpoint in the C/C++ Python extension code, use the At Location dialog, available via the Action
Points > At Location menu.

Enter a Python extension function name or file #line location, and check “Create a pending breakpoint” to
create a breakpoint in code that TotalView is not yet aware of. Click Create Breakpoint.

Figure 87, Create a Breakpoint on a Python Extension Function

Debugging Python and C/C++ with TotalView Limitations and Extensions: 223

Debugging Python

Debugging Python and C/C++ with
TotalView
With the Python session set up and a breakpoint set in the Python extension, start running the Python interpreter

by clicking Go (). TotalView stops when your breakpoint is hit.

Figure 88, Stopped at Python extension function and clean integrated call stack

Note the Call Stack in Figure 88 that displays both C and Python code.

This view has been transformed to hide function calls that just facilitate Python and C/C++ working together. See
Transforming the Stack for how this works.

Debugging Python and C/C++ with TotalView Transforming the Stack 224

Debugging Python

Transforming the Stack
One of the advanced features that TotalView provides is a fully unified Call Stack of all the Python and C/C++
frames. Further, the Call Stack removes all the noisy "glue" calls that tie together the two languages, displaying a
concise, developer-oriented view of the call from Python into C/C++.

NOTE: The ability to transform stack frames is a general capability in TotalView known as the Stack
Transformation Facility (STF). To learn more about the STF and how it works, see Part 2,Trans-
formations in the TotalView Reference Guide.

Figure 89 shows an untransformed stack on the left and a transformed stack on the right. The transformed stack
is how the developer conceptually thinks about the calls in a program.

Figure 89, Untransformed Python Stack vs. Transformed Python Stack

Debugging Python and C/C++ with TotalView Transforming the Stack 225

Debugging Python

NOTE: If the Call Stack has not been transformed to display Python calls, click the transform button

(). To preserve this setting, edit the session to ensure that “Enable call stack filtering for
Python” is checked under the Python Debugging section. See Set up a Python Debugging
Session.

Controlling the transform feature

When TotalView detects you are debugging a Python program, TotalView enables transforming the Python call
frame information from the Python interpreter.

You can disable or re-enable stack trace filtering using one of the following methods:

 Click the transform button () in the Call Stack view to toggle the transform on or off.

 Enter the following command in the Command Line view:
dstacktransform | disable | enable

 Use a state variable to control the filtering of the stack:

 stack_trace_transform_enabled (defaults to false)

This variable controls whether any stack filtering occurs.

Controlling the transformation of the stack is handled by TotalView's Stack Transformation Facility (STF), a rule-
driven capability that allows stack frames to be matched against regular expressions, and then applying filters to
the matching frames.

RELATED TOPICS
Creating stack transformations dstacktransform in the TotalView Reference Guide

General information on creating custom type
transformations

"Creating Type Transformations" in the TotalView Reference
Guide

Viewing and Comparing Python and C/C++ Variables Transforming the Stack 226

Debugging Python

Viewing and Comparing Python and C/C++
Variables
To compare the data from both sides of the language barriers, click on either the C/C++ frame or the Python
frame and observe the values of the local variables in the Local Variables view.

You can drag variables into the Data View to examine and compare them. Alternatively, right-click on the variable
name in the Source View and select Add to Data View… from the context menu.

Figure 90 displays variable a from Python frame callFact() added to the Data View. This variable value is
passed as argument n in the C frame fact(). Adding n to the Data View allows the values to be compared side-
by-side.

NOTE: Python variables are currently read-only in the Data View, indicated by a lock icon.

Viewing and Comparing Python and C/C++ Variables Transforming the Stack 227

Debugging Python

Figure 90, Comparing Python and C/C++ variables in the Data View

Leveraging Other Debugging Technologies for Python Debugging Transforming the Stack 228

Debugging Python

Leveraging Other Debugging Technologies
for Python Debugging
TotalView provides multiple powerful debugging features, such as its reverse debugging engine ReplayEngine,
which records the execution of the debugging session and then jumps back through execution to understand
how the program ran. In addition, MemoryScape easily identifies memory leaks and other memory problems.

Both technologies work while performing Python debugging and enable advanced debugging and analysis of the
C/C++ code. See the ReplayEngine User Guide to learn more about reverse debugging. For information on Mem-
oryScape, see the book Debugging Memory Problems with MemoryScape in the product distribution at
<installdir>/<totalview_version>/doc/pdf or on the TotalView documentation website, Debugging
Memory Problems with MemoryScape.

https://help.totalview.io/
https://help.totalview.io/classicTV/current/PDFs/Debugging_Memory_Problems_with_MemoryScape.pdf
https://help.totalview.io/classicTV/current/PDFs/Debugging_Memory_Problems_with_MemoryScape.pdf

Supported Python Extension Technologies for Stack Transformations Transforming the Stack 229

Debugging Python

Supported Python Extension Technologies
for Stack Transformations
Natively, Python provides the foreign function library ctypes, which provides an infrastructure for calling func-
tions in shared libraries and the exchange of C compatible data types between the language barriers.

The library ctypes is not the only solution for calling C; numerous other "glue" technologies exist, implementing
an array of approaches to facilitate calling between and exchanging data between Python and C and C++.

Common Python Extension Technologies that Support Stack Transformations

Table 5: Python Extension Technologies for Stack Transformations

Python C/C++ "Glue"
Technology Description

ctypes A foreign function library for Python.
https://docs.python.org/3/library/ctypes.html

Cython A superset of the Python language that additionally supports calling C func-
tions and declaring C types on variables and class attributes.
https://cython.org/

SWIG A software development tool that connects programs written in C and C++
with a variety of high-level programming languages including Python.
http://www.swig.org/Doc3.0/Python.html

CFFI Foreign Function Interface for Python calling C code.
http://cffi.readthedocs.io/en/latest/index.html

PyQt/PySide and SIP SIP is a tool that makes it easy to create Python bindings for C and C++ librar-
ies.
https://www.riverbankcomputing.com/software/sip/intro
https://www.riverbankcomputing.com/static/Docs/sip/

Boost.Python A C++ library which enables seamless interoperability between C++ and the
Python programming language.
http://www.boost.org/doc/libs/1_63_0/libs/python/doc/html/index.html

pybind11 Seamless operability between C++11 and Python. https://pybind11.readthe-
docs.io/en/stable/index.html

https://docs.python.org/3/library/ctypes.html
https://cython.org/
http://www.swig.org/Doc3.0/Python.html
https://cffi.readthedocs.io/en/latest/index.html
https://www.riverbankcomputing.com/software/sip/intro
https://www.riverbankcomputing.com/static/Docs/sip/
https://www.boost.org/doc/libs/1_63_0/libs/python/doc/html/index.html
https://pybind11.readthedocs.io/en/stable/index.html
https://pybind11.readthedocs.io/en/stable/index.html

Supported Python Extension Technologies for Stack Transformations Transforming the Stack 230

Debugging Python

Python Extension Filters Supported by TotalView

has built-in logic to identify and transform the low-level calls in the Python interpreter functions and extract the
Python call and variable information. Filtering out the Python extension "glue" code requires further rule defini-
tions tailored to the specific technology. The following table shows the current Python extension filters supported
by TotalView.

Support for more Python extensions will be added over time but you can also define your own transformation
and filter rules as well. Check out the dstacktransform documentation for details on creating your own stack
transformations.

Table 6: Python Extension Filters Supported by TotalView

Python C/C++ "Glue"
Technology Description

ctypes A foreign function library for Python.
https://docs.python.org/3/library/ctypes.html

SWIG A software development tool that connects programs written in C and C++
with a variety of high-level programming languages including Python.
http://www.swig.org/Doc3.0/Python.html

https://docs.python.org/3/library/ctypes.html
http://www.swig.org/Doc3.0/Python.html

231

 Using the Command Line Interface
(CLI)

 Access to the CLI on page 232

 Introduction to the CLI on page 234

 About the CLI and Tcl on page 235

 Starting the CLI in a Terminal Window on page 237

 About CLI Output on page 240

 Using Command Arguments on page 242

 Using Namespaces on page 243

 About the CLI Prompt on page 244

 Using Built-in and Group Aliases on page 245

 How Parallelism Affects Behavior on page 246

 Controlling Program Execution Using CLI Commands on page 248

 Examples of Using the CLI on page 250

Access to the CLI 232

Using the Command Line Interface (CLI)

Access to the CLI
TotalView’s default settings display the Command Line view, which provides access to the CLI.

Figure 91, Command Line View

If the Command Line view is not present when you start TotalView, open it by:

 Right-clicking in the menu/toolbar area and selecting it from the context menu.

 Selecting from the submenu Window | View.

Both of these are toggles that can also be used to close the view.

Access to the CLI 233

Using the Command Line Interface (CLI)

You can also access the CLI through a separate terminal window, as described in Starting the CLI in a Terminal
Window on page 237.

The Command Line view gives you access to the help command that provides information on many of the com-
mon CLI commands, as shown in Figure 91for dhistory.

The Command Line view has two main uses, as represented in Figure 92.

Figure 92, Uses of the Command Line View

 It shows the history of the processes and threads in the debugging session, as recorded by the
debugger’s output to the CLI.

 It provides a command line interface to the debugger. This interface is extremely powerful, allowing
you to invoke any CLI command, as described in the TotalView Reference Guide. These commands
give you fine-grained control of the debugger and the debugging session, well beyond what you
can do in the UI.

Note that the Command Line view supports command history. In Figure 92, typing history shows the list of com-
mands executed so far. Entering the command !6 re-executes the command dfocus 2.1. Use the up-arrow and
down-arrow keys to move up and down the history list.

This view also supports copy and paste, which works the same as most command line interfaces:

1. Select text by clicking and dragging.

2. Right-click and select Copy.

3. Right-click and select Paste to copy the selected text to the cursor position.

The remainder of this chapter describes the many ways to use the CLI to enhance your debugging session.

Introduction to the CLI 234

Using the Command Line Interface (CLI)

Introduction to the CLI
The two components of the Command Line Interface (CLI) are the Tcl-based programming environment and the
commands added to the Tcl interpreter that lets you debug your program. This chapter looks at how these com-
ponents interact, and describes how you specify processes, groups, and threads.

This chapter emphasizes interactive use of the CLI rather than using the CLI as a programming language because
many of its concepts are easier to understand in an interactive framework. However, everything in this chapter
can be used in both environments.

This chapter contains the following sections:

 About the CLI and Tcl

 Starting the CLI in a Terminal Window

 About CLI Output

 Using Command Arguments

 Using Namespaces

 About the CLI Prompt

 Using Built-in and Group Aliases

 How Parallelism Affects Behavior

 Controlling Program Execution Using CLI Commands

 Examples of Using the CLI

About the CLI and Tcl Integration of the CLI and the UI 235

Using the Command Line Interface (CLI)

About the CLI and Tcl
The CLI is built in version 8.0 of Tcl, so TotalView CLI commands are built into Tcl. This means that the CLI is not a
library of commands that you can bring into other implementations of Tcl. Because the Tcl you are running is the
standard 8.0 version, the CLI supports all libraries and operations that run using version 8.0 of Tcl.

Integrating CLI commands into Tcl makes them intrinsic Tcl commands. This lets you enter and execute all CLI
commands in exactly the same way as you enter and execute built-in Tcl commands. As CLI commands are also
Tcl commands, you can embed Tcl primitives and functions in CLI commands, and embed CLI commands in
sequences of Tcl commands.

For example, you can create a Tcl list that contains a list of threads, use Tcl commands to manipulate that list, and
then use a CLI command that operates on the elements of this list. You can also create a Tcl function that dynam-
ically builds the arguments that a process uses when it begins executing.

Integration of the CLI and the UI
Figure 93 illustrates the relationships between the CLI, the GUI, the TotalView core, and your program:

Figure 93, How the CLI Interacts with TotalView

The CLI and the GUI are components that communicate with the TotalView core, which drives the debugging ses-
sion. In this figure, the dotted arrow between the GUI and the CLI indicates that you can invoke the CLI from the
GUI, but the reverse is not true: you cannot invoke the GUI from the CLI.

About the CLI and Tcl Invoking CLI Commands 236

Using the Command Line Interface (CLI)

In turn, the TotalView core communicates with the processes that make up your program, receives information
back from these processes, and passes information back to the component that sent the request. If the GUI is
also active, the core also updates the GUI’s views. For example, stepping your program with the CLI changes the
PC in the source view, updates data values, and so on.

Invoking CLI Commands
You interact with the CLI by entering a CLI or Tcl command. (Entering a Tcl command does exactly the same thing
in the CLI as it does when interacting with a Tcl interpreter.) Typically, the effect of executing a CLI command is
one or more of the following:

 The CLI displays information about your program.

 A change takes place in your program’s state.

 A change takes place in the information that the CLI maintains about your program.

After the CLI executes your command, it displays a prompt. Although CLI commands are executed sequentially,
commands executed by your program might not be. For example, the CLI does not require that your program be
stopped when it prompts for and performs commands. It only requires that the last CLI command be complete
before it can begin executing the next one. In many cases, the processes and threads being debugged continue
to execute after the CLI has finished doing what you asked it to do.

If you need to stop an executing CLI command or Tcl macro, press Ctrl+C while the command is executing. If the
CLI is displaying its prompt, typing Ctrl+C stops any executing processes.

Because actions are occurring constantly, state information and other kinds of messages that the CLI displays are
usually mixed in with the commands that you type. You might want to limit the amount of information TotalView
displays by setting the VERBOSE variable to WARNING or ERROR. (For more information, see the “TotalView Vari-
ables” chapter in the TotalView Reference Guide.)

Starting the CLI in a Terminal Window Startup Example 237

Using the Command Line Interface (CLI)

Starting the CLI in a Terminal Window
In the GUI, the Command Line view represents a command window with the CLI enabled.

In a terminal window, you start the CLI by typing totalviewcli (assuming that the TotalView binary directory is in
your path.)

If you have problems entering and editing commands, it might be because you have invoked the CLI from a shell
or process that manipulates your stty settings. You can eliminate these problems if you use the stty sane CLI
command. (If the sane option isn’t available, you have to change values individually.)

If you start the CLI with the totalviewcli command, you can use all of the command-line options that you can use
when starting TotalView, except those that have to do with the GUI. (In some cases, TotalView displays an error
message if you try. In others, it just ignores what you did.)

Information on command-line options is in the "TotalView Command Syntax" chapter of the TotalView Reference
Guide.

Startup Example
The following is a very small CLI script:
dload fork_loop
dset ARGS_DEFAULT {0 4 -wp}
dstep
catch {make_actions fork_loop.cxx} msg
puts $msg

This script loads the fork_loop executable, sets its default startup arguments, and steps one source-level
statement.

If you stored this in a file named fork_loop.tvd, you could tell TotalView to start the CLI and execute this file by
entering the following command:
totalviewcli -s fork_loop.tvd

The following example places a similar set of commands in a file that you invoke from the shell:
#!/bin/sh
Next line executed by shell, but ignored by Tcl because: \
exec totalviewcli -s "$0" "$@"
dload fork_loop
dset ARGS_DEFAULT {0 4 -wp}
dstep
catch {make_actions fork_loop.cxx} msg
puts $msg

Starting the CLI in a Terminal Window Starting Your Program 238

Using the Command Line Interface (CLI)

These two examples are essentially the same except for the first few lines in the second example. In the second
example, the shell ignores the backslash continuation character; Tcl processes it. This means that the shell exe-
cutes the exec command while Tcl ignores it.

Starting Your Program
The CLI lets you start debugging operations in several ways. To execute your program from within the CLI, enter a
dload command followed by the drun command.

If your program is launched from a starter program such as srun or yod, use the drerun command rather than
drun to start your program. If you use drun, default arguments to the process are suppressed; drerun passes
them on.

The following example uses the totalviewcli command to start the CLI. This is followed by dload and drun com-
mands. Since this was not the first time the file was run, breakpoints exist from a previous session.

In this listing, the CLI prompt is “d1.<>”. The information preceding the greater-than symbol (>) symbol indicates
the processes and threads upon which the current command acts. The prompt is discussed in About the CLI
Prompt.
% totalviewcli
d1.<> dload arraysAlpha #load the arraysAlpha program
1
d1.<> dactions # Show the action points
No matching breakpoints were found
d1.<> dlist -n 10 75
75 real16_array (i, j) = 4.093215 * j+2
76 #endif
77 26 continue
78 27 continue
79
80 do 40 i = 1, 500
81 denorms(i) = x'00000001'
82 40 continue
83 do 42 i = 500, 1000
84 denorms(i) = x'80000001'
d1.<> dbreak 80 # Add two action points
1
d1.<> dbreak 83
2
d1.<> drun # Run the program to the action point

This two-step operation of loading and running supports setting action points before execution begins, as well as
executing a program more than once. At a later time, you can use drerun to restart your program, perhaps send-
ing it new arguments. In contrast, reentering the dload command reloads the program into memory (for
example, after editing and recompiling the program).

The dload command always creates a new process. The new process is in addition to any existing processes for
the program because the CLI does not shut down older processes when starting the new one.

Starting the CLI in a Terminal Window Starting Your Program 239

Using the Command Line Interface (CLI)

The dkill command terminates one or more processes of a program started by using a dload, drun, or drerun
command. The following example continues where the previous example left off:

d1.<> dkill # kills process
d1.<> drun # runs program from start
d1.<> dlist -e -n 3 # shows lines about current spot
79
80@> do 40 i = 1, 500
81 denorms(i) = x'00000001'
d1.<> dwhatmaster_array # Tell me about master_array
In thread 1.1:
Name: master_array; Type: integer(100);
Size: 400 bytes; Addr: 0x140821310
Scope: ##arraysAlpha#arrays.F#check_fortran_arrays
(Scope class: Any)
Address class: proc_static_var
(Routine static variable)
d1.<> dgo # Start program running
d1.<> dwhat denorms # Tell me about denorms
In thread 1.1:
Name: denorms; Type: <void>; Size: 8 bytes;
Addr: 0x1408214b8
Scope: ##arraysAlpha#arrays.F#check_fortran_arrays
(Scope class: Any)
Address class: proc_static_var
(Routine static variable)
d1.<> dprint denorms(0) # Show me what is stored
denorms(0) = 0x0000000000000001 (1)
d1.<>

Because information is interleaved, you may not realize that the prompt has re-appeared. It is always safe to use
the Enter key to have the CLI redisplay its prompt. If a prompt isn’t displayed after you press Enter, you know that
the CLI is still executing.

About CLI Output Starting Your Program 240

Using the Command Line Interface (CLI)

About CLI Output
A CLI command can either print its output to a window or return the output as a character string. If the CLI exe-
cutes a command that returns a string value, it also prints the returned string. Most of the time, you won’t care
about the difference between printing and returning-and-printing. Either way, the CLI displays information in your
window. And, in both cases, printed output is fed through a simple more processor (see below).

In the following two cases, it matters whether the CLI directly prints output or returns and then prints it:

 When the Tcl interpreter executes a list of commands, the CLI only prints the information returned
from the last command. It doesn’t show information returned by other commands.

 You can only assign the output of a command to a variable if the CLI returns a command’s output.
You can’t assign output that the interpreter prints directly to a variable, or otherwise manipulate it,
unless you save it using the capture command.

For example, the dload command returns the ID of the process object that was just created. The ID is normally
printed—unless, of course, the dload command appears in the middle of a list of commands; for example:
{dload test_program;dstatus}

In this example, the CLI doesn’t display the ID of the loaded program since the dload command was not the last
command.

When information is returned, you can assign it to a variable. For example, the next command assigns the ID of a
newly created process to a variable:
set pid [dload test_program]

Because the help command only prints its output without returning a string, the following does not work:
set htext [help]

This statement assigns just an empty string to htext.

To save the output of a command that prints its output, use the capture command. For example, the following
example writes the help command’s output into a variable:
set htext [capture help]

You can capture the output only from commands. You can’t capture the informational messages displayed by the
CLI that describe process state. If you are using the UI, TotalView also writes this information to the Input/Output
view.

About CLI Output ‘more’Processing 241

Using the Command Line Interface (CLI)

‘more’Processing
When the CLI displays output, it sends data through a simple more-like process. This prevents data from scrolling
off the screen before you view it. After you see the MORE prompt, press Enter to see the next screen of data. If
you enter ‘q’, the CLI discards any data it hasn’t yet displayed.

You can control the number of lines displayed between prompts by using the dset command to set the
LINES_PER_SCREEN CLI variable. (For more information, see the TotalView Reference Guide.)

Using Command Arguments ‘more’Processing 242

Using the Command Line Interface (CLI)

Using Command Arguments
The default command arguments for a process are stored in the ARGS(num) variable, where num is the CLI ID
for the process. If you don’t set the ARGS(num) variable for a process, the CLI uses the value stored in the
ARGS_DEFAULT variable. TotalView sets the ARGS_DEFAULT variable when you use the -a option when starting
the CLI or the GUI.

The-a option passes everything that follows on the command line to the program.

For example:
totalviewcli -a argument-1, argument-2, ...

To set (or clear) the default arguments for a process, you can use the dset (or dunset) command to modify the
ARGS() variables directly, or you can start the process with the drun command. For example, the following clears
the default argument list for process 2:
dunset ARGS(2)

The next time process 2 is started, the CLI uses the arguments contained in ARGS_DEFAULT.

You can also use the dunset command to clear the ARGS_DEFAULT variable; for example:
dunset ARGS_DEFAULT

All commands (except the drun command) that can create a process—including the dgo, drerun, dcont, dstep,
and dnext commands—pass the default arguments to the new process. The drun command differs in that it
replaces the default arguments for the process with the arguments that are passed to it.

Using Namespaces ‘more’Processing 243

Using the Command Line Interface (CLI)

Using Namespaces
CLI interactive commands exist in the primary Tcl namespace (::). Some of the TotalView state variables also
reside in this namespace. Seldom-used functions and functions that are not primarily used interactively reside in
other namespaces. These namespaces also contain most TotalView state variables. (The variables that appear in
other namespaces are usually related to TotalView preferences.) TotalView uses the following namespaces:

TV::

Contains commands and variables that you use when creating functions. They can be used interactively, but this
is not their primary role.

TV::GUI::

Contains state variables that define and describe properties of the user interface, such as window placement
and color.

If you discover other namespaces beginning with TV, you have found a namespace that contains private func-
tions and variables. These objects can (and will) disappear, so don’t use them. Also, don’t create namespaces that
begin with TV, since you can cause problems by interfering with built-in functions and variables.

The CLI dset command lets you set the value of these variables. You can have the CLI display a list of these vari-
ables by specifying the namespace; for example:
dset TV::

You can use wildcards with this command. For example, dset TV::au* displays all variables that begin with “au”.

About the CLI Prompt ‘more’Processing 244

Using the Command Line Interface (CLI)

About the CLI Prompt
The appearance of the CLI prompt lets you know that the CLI is ready to accept a command. This prompt lists the
current focus, and then displays a greater-than symbol (>) and a blank space. The current focus is the processes
and threads to which the next command applies. Here are some examples:

d1.<>

The current focus is the default focus set for each command, which is first user thread in process 1.

g2.3>

The current focus is process 2, thread 3; commands act on the entire group.

t1.7>

The current focus is thread 7 of process 1.

gW3.>

The current focus is all worker threads in the control group that contains process 3.

p3/3

The current focus is all processes in process 3, group 3.

You can change the prompt’s appearance by using the dset command to set the PROMPT state variable; for
example:
dset PROMPT "Kill this bug! > "

Using Built-in and Group Aliases ‘more’Processing 245

Using the Command Line Interface (CLI)

Using Built-in and Group Aliases
Many CLI commands have an alias that lets you abbreviate the command’s name. (An alias is one or more charac-
ters that Tcl interprets as a command or command argument.)

The alias command, which is described in the TotalView Reference Guide, lets you create your own aliases.

For example, the following command halts the current group:
dfocus g dhalt

Using an abbreviation is easier. The following command does the same thing:
f g h

You often type less-used commands in full, but some commands are almost always abbreviated. These com-
mands include dbreak (b), ddown (d), dfocus (f), dgo (g), dlist (l), dnext (n), dprint (p), dstep (s), and dup (u).

The CLI also includes uppercase group versions of aliases for a number of commands, including all stepping com-
mands. For example, the alias for dstep is s; in contrast, the alias for dfocus g dstep is S. The first command
steps the process. The second steps the control group.

Group aliases differ from the group-level command that you type interactively, as follows:

 They do not work if the current focus is a list. The g focus specifier modifies the current focus, and
can only be applied if the focus contains just one term.

 They always act on the group, no matter what width is specified in the current focus. Therefore,
dfocus t S does a step-group command.

How Parallelism Affects Behavior ‘more’Processing 246

Using the Command Line Interface (CLI)

How Parallelism Affects Behavior
A parallel program consists of some number of processes, each involving some number of threads. Processes fall
into two categories, depending on when they are created:

 Initial process

A pre-existing process from the normal run-time environment (that is, created outside TotalView), or one that
was created as TotalView loaded the program.

 Spawned process

A new process created by a process executing under CLI control.

TotalView assigns an integer value to each individual process and thread under its control. This process/thread
identifier can be the system identifier associated with the process or thread. However, it can be an arbitrary value
created by the CLI. Process numbers are unique over the lifetime of a debugging session; in contrast, thread
numbers are only unique while the process exists.

Process/thread notation lets you identify the component that a command targets. For example, if your program
has two processes, and each has two threads, four threads exist:

Thread 1 of process 1
Thread 2 of process 1
Thread 1 of process 2
Thread 2 of process 2

You identify the four threads as follows:
1.1—Thread 1 of process 1
1.2—Thread 2 of process 1
2.1—Thread 1 of process 2
2.2—Thread 2 of process 2

RELATED TOPICS
An overview of threads and processes and how TotalView
organizes them into groups

What Is a Group? on page 344 and How TotalView
Creates Groups on page 345

More on TotalView thread/process width Executing at Process Width on page 370 and Exe-
cuting at Thread Width on page 370

How Parallelism Affects Behavior Types of IDs 247

Using the Command Line Interface (CLI)

Types of IDs
Multi-threaded, multi-process, and distributed programs contain a variety of IDs. The following types are used in
the CLI and the GUI:

System PID

This is the process ID and is generally called the PID.

System TID

This is the ID of the system kernel or user thread. On some systems (for example, AIX), the TIDs have no obvious
meaning. On other systems, they start at 1 and are incremented by 1 for each thread.

TotalViewthread ID

This is usually identical to the system TID. On some systems (such as AIX) where the threads have no obvious
meaning, TotalView uses its own IDs.

pthread ID

This is the ID assigned by the Posix pthreads package. If this differs from the system TID, the TID is a pointer value
that points to the pthread ID.

Debugger PID

This is an ID created by TotalView to identify processes. It is a sequentially numbered value beginning at 1 that is
incremented for each new process. If the target process is killed and restarted (that is, you use the dkill and
drun commands), the TotalView PID does not change. The system PID changes, however, since the operating
system has created a new target process.

Controlling Program Execution Using CLI Commands Advancing Program Execution 248

Using the Command Line Interface (CLI)

Controlling Program Execution Using CLI
Commands
Knowing what’s going on and where your program is executing is simple in a serial debugging environment. Your
program is either stopped or running. When it is running, an event such as arriving at a breakpoint can occur,
stopping the program. Sometime later, you tell the serial program to continue executing.

Multi-process and multi-threaded programs are more complicated. Each thread and each process has its own
execution state. When a thread (or set of threads) triggers a breakpoint, TotalView must also determine how
other threads and processes respond, stopping some and letting others continue to run.

Advancing Program Execution
Debugging begins by entering a dload or dattach command. If you use the dload command, you must use the
drun command (or perhaps drerun if there’s a starter program) to start the program executing. These three
commands work at the process level and you can’t use them to start individual threads. This is also true for the
dkill command.

To advance program execution, you enter a command that causes one or more threads to execute instructions.
The commands are applied to a P/T set. (See “Compressed List Syntax” in the TotalView Reference Guide.)
Because the set doesn’t have to include all processes and threads, you can cause some processes to be executed
while holding others back. You can also advance program execution by increments, stepping the program forward,
and you can define the size of the increment. For example, dnext 3 executes the next three statements, and then
pauses what you’ve been stepping.

Typically, debugging a program means that you have the program run, and then you stop it and examine its state.
In this sense, a debugger can be thought of as a tool that lets you alter a program’s state in a controlled way, and
debugging is the process of stopping a process to examine its state. However, the term stop has a slightly differ-

RELATED TOPICS
Stepping commands Stepping and Program Execution on page 367
The dload command dload in "CLI Commands" in the TotalView Reference

Guide
The dattach command dattach in "CLI Commands"in the TotalView Refer-

ence Guide
The drun command drun in "CLI Commands" in the TotalView Reference

Guide
The dkill command dkill in "CLI Commands" in the TotalView Reference

Guide

Controlling Program Execution Using CLI Commands Using Action Points 249

Using the Command Line Interface (CLI)

ent meaning in a multi-process, multi-threaded program. In these programs, stopping means that the CLI holds
one or more threads at a location until you enter a command to start executing again. Other threads, however,
may continue executing.

Using Action Points
Action points tell the CLI to stop a program’s execution. You can specify the following types of action points:

 A breakpoint (see dbreakin the TotalView Reference Guide) stops the process when the program
reaches a location in the source code.

 A watchpoint (see dwatchin the TotalView Reference Guide) stops the process when the value of a
variable is changed.

 A barrierpoint (seedbarrierin the TotalView Reference Guide), as its name suggests, effectively
prevents processes from proceeding beyond a point until all other related processes arrive. This
gives you a method for synchronizing the activities of processes. (You can set a barrierpoint only on
processes; you cannot set then on individual threads.)

 An evalpoint (seedbreakin the TotalView Reference Guide) lets you programmatically evaluate the
state of the process or variable when execution reaches a location in the source code. An evalpoint
typically does not stop the process; instead, it performs an action. In most cases, an evalpoint stops
the process when some condition that you specify is met.

Each action point is associated with an action point identifier. You use these identifiers when you need to refer to
the action point. Like process and thread identifiers, action point identifiers are assigned numbers as they are
created. The ID of the first action point created is 1, the second ID is 2, and so on. These numbers are never
reused during a debugging session.

The CLI and the GUI let you assign only one action point to a source code line, but you can make this action point
as complex as you need it to be.

Examples of Using the CLI Setting the CLI EXECUTABLE_PATH Variable 250

Using the Command Line Interface (CLI)

Examples of Using the CLI
The CLI is a command-line debugger that is completely integrated with TotalView. You can use it and never use
the TotalView GUI, or you can use it and the GUI simultaneously. Because the CLI is embedded in a Tcl interpreter,
you can also create debugging functions that exactly meet your needs. When you do this, you can use these func-
tions in the same way that you use TotalView’ built-in CLI commands.

This section contains macros that show how the CLI programmatically interacts with your program and with
TotalView. Reading examples without bothering too much about details gives you an appreciation for what the
CLI can do and how you can use it. With a basic knowledge of Tcl, you can make full use of all CLI features.

In each macro in this chapter, all Tcl commands that are unique to the CLI are displayed in bold. These macros
perform the following tasks:

 Setting the CLI EXECUTABLE_PATH Variable

 Initializing an Array Slice

 Printing an Array Slice

 Writing an Array Variable to a File

 Automatically Setting Breakpoints

Setting the CLI EXECUTABLE_PATH Variable
The following macro recursively descends through all directories, starting at a location that you enter. (This is indi-
cated by the root argument.) The macro ignores directories named in the filter argument. The result is set as the
value of the CLI EXECUTABLE_PATH state variable.

See also the TotalView Reference Guide’s entry for the EXECUTABLE_PATH variable

Usage:
#
rpath [root] [filter]
#
If root is not specified, start at the current
directory. filter is a regular expression that removes
unwanted entries. If it is not specified, the macro
automatically filters out CVS/RCS/SCCS directories.
#
The search path is set to the result.
proc rpath {{root "."} {filter "/(CVS|RCS|SCCS)(/|$)"}} {
Invoke the UNIX find command to recursively obtain

Examples of Using the CLI Initializing an Array Slice 251

Using the Command Line Interface (CLI)

a list of all directory names below "root".
set find [split [exec find $root-type d-print] \n]
set npath ""
Filter out unwanted directories.
foreach path $find {
if {! [regexp $filter $path]} {
append npath ":"
append npath $path
}
}
Tell TotalView to use it.
dset EXECUTABLE_PATH $npath
}

In this macro, the last statement sets the EXECUTABLE_PATH state variable. This is the only statement that is
unique to the CLI. All other statements are standard Tcl.

The dset command, like most interactive CLI commands, begins with the letter d. (The dset command is only
used in assigning values to CLI state variables. In contrast, values are assigned to Tcl variables by using the stan-
dard Tcl set command.)

Initializing an Array Slice
The following macro initializes an array slice to a constant value:

array_set (var lower_bound upper_bound val) {
for {set i $lower_bound} {$i <= $upper_bound} {incr i}{
dassign $var\($i) $val
}
}

The CLI dassign command assigns a value to a variable. In this case, it is setting the value of an array element.
Use this function as follows:

d1.<> dprint list3
list3 = {
(1) = 1 (0x0000001)
(2) = 2 (0x0000001)
(3) = 3 (0x0000001)
}
d1.<> array_set list 2 3 99
d1.<> dprint list3
list3 = {
(1) = 1 (0x0000001)
(2) = 99 (0x0000063)
(3) = 99 (0x0000063)
}

Examples of Using the CLI Printing an Array Slice 252

Using the Command Line Interface (CLI)

For more information on slices, see the section “Displaying Array Slices,” in the Classic TotalView User Guide in the
product distribution at <installdir>/totalview.<version>/doc/pdf or on the TotalView Documenta-
tion website, Displaying Array Slices.

Printing an Array Slice
The following macro prints a Fortran array slice. This macro, like others shown in this chapter, relies heavily on Tcl
and uses unique CLI commands sparingly.

proc pf2Dslice {anArray i1 i2 j1 j2 {i3 1} {j3 1} \
{width 20}} {
for {set i $i1} {$i <= $i2} {incr i $i3} {
set row_out ""
for {set j $j1} {$j <= $j2} {incr j $j3} {
set ij [capture dprint $anArray\($i,$j\)]
set ij [string range $ij \
[expr [string first "=" $ij] + 1] end]
set ij [string trimright $ij]
if {[string first "-" $ij] == 1} {
set ij [string range $ij 1 end]}
append ij " "
append row_out " " \
[string range $ij 0 $width] " "
}
puts $row_out
}
}

The CLI’s dprint command lets you specify a slice. For example, you can type: dprint a(1:4,1:4).

After invoking this macro, the CLI prints a two-dimensional slice (i1:i2:i3, j1:j2:j3) of a Fortran array to a numeric
field whose width is specified by the width argument. This width does not include a leading minus sign (-).

All but one line is standard Tcl. This line uses the dprint command to obtain the value of one array element. This
element’s value is then captured into a variable. The CLI capture command allows a value that is normally printed
to be sent to a variable. For information on the difference between values being displayed and values being
returned, see About CLI Output.

The following shows how this macro is used:

d1.<> pf2Dslice a 1 4 1 4
0.841470956802 0.909297406673 0.141120001673-0.756802499294
0.909297406673-0.756802499294-0.279415488243 0.989358246326
0.141120001673-0.279415488243 0.412118494510-0.536572933197
-0.756802499294 0.989358246326-0.536572933197-0.287903308868
d1.<> pf2Dslice a 1 4 1 4 1 1 17
0.841470956802 0.909297406673 0.141120001673-0.756802499294
0.909297406673-0.756802499294-0.279415488243 0.989358246326
0.141120001673-0.279415488243 0.412118494510-0.536572933197
-0.756802499294 0.989358246326-0.536572933197-0.287903308868
d1.<> pf2Dslice a 1 4 1 4 2 2 10

https://help.totalview.io/
https://help.totalview.io/
https://help.totalview.io/classicTV/current/HTML/index.html#page/User_Guides/DisplayingArraySlices.html

Examples of Using the CLI Writing an Array Variable to a File 253

Using the Command Line Interface (CLI)

0.84147095 0.14112000
0.14112000 0.41211849
d1.<> pf2Dslice a 2 4 2 4 2 2 10
-0.75680249 0.98935824
0.98935824 -0.28790330
d1.<>

Writing an Array Variable to a File
It often occurs that you want to save the value of an array so that you can analyze its results at a later time. The
following macro writes array values to a file:
proc save_to_file {var fname} {
set values [capturedprint$var]
set f [open $fname w]
puts $f $values
close $f
}

The following example shows how you might use this macro. Using the exec command displays the file that was
just written.
d1.<> dprint list3
list3 = {
(1) = 1 (0x00000001)
(2) = 2 (0x00000002)
(3) = 3 (0x00000003)
}
d1.<> save_to_file list3 foo
d1.<> exec cat foo
list3 = {
(1) = 1 (0x00000001)
(2) = 2 (0x00000002)
(3) = 3 (0x00000003)
}
d1.<>

Automatically Setting Breakpoints
In many cases, your knowledge of what a program is doing lets you make predictions as to where problems are
occurring. The following CLI macro parses comments that you can include in a source file and, depending on the
comment’s text, sets a breakpoint or an evalpoint.

(For detailed information on action points, see the section Breakpoints on page 85.

Following this macro is an excerpt from a program that uses it.

#make_actions: Parse a source file, and insert
evaluation and breakpoints according to comments.
#
proc make_actions {{filename ""}} {

Examples of Using the CLI Automatically Setting Breakpoints 254

Using the Command Line Interface (CLI)

if {$filename == ""} {
puts "You need to specify a filename"
error "No filename"
}
Open the program’s source file and initialize a
few variables.
set fname [set filename]
set fsource [open $fname r]
set lineno 0
set incomment 0
Look for "signals" that indicate the type of
action point; they are buried in the comments.
while {[gets $fsource line] !=-1} {
incr lineno
set bpline $lineno
Look for a one-line evalpoint. The
format is ... /* EVAL: some_text */.
The text after EVAL and before the "*/" in
the comment is assigned to "code".
if [regexp "/* EVAL: *(.*)*/" $line all code] {

dbreak $fname\#$bpline -e $code
continue
}
Look for a multiline evalpoint.
if [regexp "/* EVAL: *(.*)" $line all code] {
Append lines to "code".
while {[gets $fsource interiorline] !=-1} {
incr lineno
Tabs will confuse dbreak.
regsub-all \t $interiorline \
" " interiorline
If "*/" is found, add the text to "code",
then leave the loop. Otherwise, add the
text, and continue looping.
if [regexp "(.*)*/" $interiorline \
all interiorcode]{
append code \n $interiorcode
break
} else {
append code \n $interiorline
}
}
dbreak $fname\#$bpline -e $code
continue
}
Look for a breakpoint.
if [regexp "/* STOP: .*" $line] {
dbreak $fname\#$bpline
continue
}
Look for a command to be executed by Tcl.
if [regexp "/* *CMD: *(.*)*/" $line all cmd] {
puts "CMD: [set cmd]"
eval $cmd

Examples of Using the CLI Automatically Setting Breakpoints 255

Using the Command Line Interface (CLI)

}
}
close $fsource
}

Like the previous macros, almost all of the statements are Tcl. The only purely CLI commands are the instances of
the dbreak command that set evalpoints and breakpoints.

The following excerpt from a larger program shows how to embed comments in a source file that is read by the
make_actions macro:

...
struct struct_bit_fields_only {
unsigned f3 : 3;
unsigned f4 : 4;
unsigned f5 : 5;
unsigned f20 : 20;
unsigned f32 : 32;
} sbfo, *sbfop = &sbfo;
...
int main()
{
struct struct_bit_fields_only *lbfop = &sbfo;
...
int i;
int j;
sbfo.f3 = 3;
sbfo.f4 = 4;
sbfo.f5 = 5;
sbfo.f20 = 20;
sbfo.f32 = 32;
...
/* TEST: Check to see if we can access all the
values */
i=i; /* STOP: */
i=1; /* EVAL: if (sbfo.f3 != 3) $stop; */
i=2; /* EVAL: if (sbfo.f4 != 4) $stop; */
i=3; /* EVAL: if (sbfo.f5 != 5) $stop; */
...
return 0;
}

The make_actions macro reads a source file one line at a time. As it reads these lines, the regular expressions
look for comments that begin with /* STOP, /* EVAL, and /* CMD. After parsing the comment, it sets a break-
point at a stop line, an evalpoint at an eval line, or executes a command at a cmd line.

Using evalpoints can be confusing because evalpoint syntax differs from that of Tcl. In this example, the $stop
function is built into the CLI. Stated differently, you can end up with Tcl code that also contains C, C++, Fortran,
and TotalView functions, variables, and statements. Fortunately, you only use this kind of mixture in a few places
and you’ll know what you’re doing.

256

 Reverse Connections

 About Reverse Connections on page 257

 Starting a Reverse Connect Session on page 261

 Reverse Connect Examples on page 263

 Troubleshooting Reverse Connections on page 265

The organization of modern HPC systems often makes it difficult to deploy tools such as TotalView. For exam-
ple, the compute nodes in a cluster may not have access to any X libraries or X forwarding, so launching a GUI
on a compute node is not possible.

Using the Reverse Connect feature, you can run the TotalView UI on a front-end node to debug a job execut-
ing on compute nodes.

The basic process is to embed the tvconnect command in a batch script; when the batch job runs, the
tvconnect process connects with the TotalView client to start the debugger server process on the batch
node. The TotalView client would typically run on a front-end node, where the application is built and batch
jobs are submitted.

About Reverse Connections 257

Reverse Connections

About Reverse Connections
When using reverse connect, TotalView is started in two stages:

1. Run the tvconnect command to create a debugging request, typically from a batch job on a batch node or
compute node in a cluster. The tvconnect command accepts the name of the program to debug, along
with any arguments to pass to the program.

The tvconnect process blocks for a TotalView session to accept the request.

2. Start TotalView on another node, which is typically a front-end node. When the UI opens, TotalView looks
for a request, and if it finds one, confirms via a pop-up to accept it. If the request is accepted, TotalView
starts a debugger server on the node where the tvconnect process is running, and loads the program that
was passed to the tvconnect command. If the request is rejected, the tvconnect process exits with an
error.

At that point, you can debug the program in the normal way within the TotalView UI.

Here’s a little more detail on how the process works.

Figure 94, Reverse connection flow

About Reverse Connections 258

Reverse Connections

Typically, a tvconnect command is added to a batch script, placed in front of the command to debug. For
example:

tvconnect srun -n4 myMPIprogram
Once a batch script runs and starts the tvconnect command and a TotalView front-end UI is started:

1. The tvconnect command creates a request in the $HOME/.totalview/connect directory and blocks
indefinitely until the request is either accepted or rejected. If the tvconnect process is killed with a SIGINT
or SIGTERM, the tvconnect process deletes the request it created.

2. TotalView reads the request file written by the tvconnect process.

3. TotalView accepts or rejects the request, sending back a response.

4. tvconnect reads the response. If it was accepted:

5. tvconnect execs tvdsvr, the command that allows TotalView to control and debug a program on a remote
machine.

6. tvdsvr opens a connection to the TotalView UI. TotalView then loads the program and any program argu-
ments, using the parameters provided to tvconnect. In this example, srun was loaded to debug an MPI job.

NOTE: TotalView does not look for reverse connect requests once it starts to debug a program, i.e., it
automatically listens only if no other debug session is active. You can choose, however, to
continue to listen for connection requests while debugging. See Listening for Reverse
Connections.

Reverse connections are also supported by the CLI dload command, which has options to either accept or reject
reverse connections. In addition, some command line arguments and special environment variables are available
that can be used to modify some behavior.

RELATED TOPICS
dload command’s reverse connect options list_reverse_connect under dload in the TotalView Reference

Guide
reject_reverse_connect in the TotalView Reference Guide
accept_reverse_connect in the TotalView Reference Guide

Environment variables specific to reverse
connections

Reverse Connection Environment Variables

About Reverse Connections Reverse Connection Environment Variables 259

Reverse Connections

Reverse Connection Environment Variables
TotalView supports two special reverse-connection specific environment variables:

 TV_REVERSE_CONNECT_DIR

 TVCONNECT_OPTIONS

TV_REVERSE_CONNECT_DIR

The environment variable TV_REVERSE_CONNECT_DIR identifies the directory where the request and response
files will be written and read.

The default location is the user’s $HOME/.totalview/connect directory.

To customize the location for your reverse connection files, set this environment variable before starting
tvconnect and TotalView:
setenv TV_REVERSE_CONNECT_DIR /home/tv-reverse-connect/tmp
Reverse Connection Directory Requirements

The directory that will contain the generated reverse connect files must:

 Be owned by the same user that is running the tvconnect process and the TotalView client.

 Have permissions that allow access only by the user. No "Group" or "Other" permissions are
allowed.

By default, tvconnect creates the connect directory with the following permissions:

>ls -l ~/.totalview/
total 80
drwx------ 2 smith tss 4096 Jul 23 12:11 connect

TV_CONNECT_OPTIONS

The environment variable TVCONNECT_OPTIONS supports the ability to add extra arguments to the tvconnect
command. One such option might be -ipv6_support, which adds support for IPv6 addresses. For example:

State variable TV::reverse_connect_wanted TV::reverse_connect_wanted in the TotalView Reference
Guide

Command line arguments specific to reverse
connections

-reverse_connect and -no_reverse_connect in the “Com-
mand Syntax: chapter of the TotalView Reference Guide

RELATED TOPICS

About Reverse Connections Reverse Connection Environment Variables 260

Reverse Connections

setenv TVCONNECT_OPTIONS="-ipv6_support"
tvconnect ~/tx_hello
or just:
env TVCONNECT_OPTIONS="-ipv6_support" tvconnect ~/tx_hello

Starting a Reverse Connect Session Reverse Connection Environment Variables 261

Reverse Connections

Starting a Reverse Connect Session
1. Run the tvconnect command on a “back-end” compute node. This node does not need access to X librar-

ies to launch a UI. Provide as an argument the program to debug. For example, at its most simple:
tvconnect /home/totalview/tests/myTest
This command creates a request file in the user’s $HOME/.totalview/connect directory. The file con-
tains all the information needed to launch a debugging session on a “front-end” where TotalView is installed
with UI capabilities. The request includes such things as the remote host name, the IP address, the user’s
home directory, and other information required to launch the debugging session.

This command then blocks waiting for a response.

2. Start TotalView with no arguments on the server where you will perform debugging:
totalview
When TotalView launches, it automatically listens for reverse connection requests, briefly displaying a notice:

NOTE: TotalView automatically listens for connections at launch only when invoked with-
out specifying a debug target. If lTotalView starts debugging a different program, it
does not automatically listen for reverse connections.

If one or more requests are found, it then launches a pop-up to confirm that you want to accept the reverse
debugging request:

If you select “No,” the back-end tvconnect stops waiting and exits with the following error message:

“Reverse connect request was rejected.”

If you select “Yes,” your program to debug launches in the usual way, and you can start your debugging ses-
sion.

Starting a Reverse Connect Session Listening for Reverse Connections 262

Reverse Connections

Note that the UI displays the node where TotalView is running in parenthesis in the title bar:

Listening for Reverse Connections
Once you start a debugging session, TotalView automatically stops listening for reverse connection requests.

To turn back on listening mode, you have two options. Either:

 Go to the Start Page and toggle on the “Listen for Reverse Connections” switch:

or

 Choose the “Listen for Reverse Connections” option from the File menu:

Reverse Connect Examples CLI Example 263

Reverse Connections

Reverse Connect Examples
Initiate a reverse connection request by specifying any debug target program as the argument to tvconnect. The
specified program must be accessible by the TotalView front-end UI that wishes to accept the request.

Here’s a simple example:
tvconnect /home/totalview/tests/myTest
To start it on an MPI job, for example:
tvconnect srun -n 4 /home/fullpath/tx_mpi_test

CLI Example
This example illustrates the usage of the reverse connection dload options.

Assume that:

 tvconnect was started on machine1 specifying a program with a full path

 tvconnect was started on machine2 specifying the program tx_hello

 The program was in the current working directory and no path was added to the program.

d1.<> dload -list_reverse_connect
(1) machine1.totalviewtech.com /home/user/tests/tx_blocks
(2) machine2.totalviewtech.com tx_hello
d1.<> dload -accept_rc 1
d1.<> dload -reject_rc 2

MPI Batch Script Example
This is a simple example for invoking an MPI job from a batch script.

1. Create your job script. For example, create a batch script containing the following:
 #-----------------------
 #!/bin/tcsh
 #SBATCH -p pdebug
 #SBATCH -J myJob
 #SBATCH -N 2
 # Wait for a front end TV to accept this reverse connection request
 tvconnect srun -n4 myMPIprogram
 echo 'DONE!'
 #-----------------------
Once the script is run, the tvconnect command creates the request file with the necessary details, then
holds and waits for a connection request.

Reverse Connect Examples MPI Batch Script Example 264

Reverse Connections

2. Start TotalView on your front-end node and accept the request. The debugger begins debugging srun.
Pressing Go starts the MPI job and TotalView will attach to the MPI processes running on the compute
nodes in the normal way.

NOTE: If the application is in your system path, TotalView will find it. i.e., you do not need to enter the
full path in your command.

it is not required that you include the full path to your application in the command, if the application is in your
path. In the above case, myMPIprogram was in the current working directory when the batch job was submitted.
The request file reports the current working directory, so that the front-end TotalView can find the application
even if it was not started from same directory.

Troubleshooting Reverse Connections Stale Files in the Reverse Connect Directory 265

Reverse Connections

Troubleshooting Reverse Connections
Most of the issues that can result in a failed reverse connection have to do with the reverse connect directory
where TotalView writes and reads connection requests.

Stale Files in the Reverse Connect Directory
In some cases, TotalView may leave stale request or response files in the reverse connect directory, which could
result in a failed connection attempt.

If you have no pending reverse connect requests, it is safe to remove the entire directory or its contents. For
example, use rm -rf $HOME/.totalview/connect to remove the default directory and all its files. The
tvconnect process will recreate the directory when needed.

Directory Permissions
You must be the owner of the reverse connect directory, and its permissions must allow "user" access only. The
directory cannot be owned by a different user, and cannot have any "group" or "other" permission bits set.

User ID Issues
The tvconnect process and the TotalView client must be running with the same effective user id (euid). The
euid of the processes run by the client must match that of the reverse connect directory.

Reverse Connect Directory Environment Variable
If the TotalView client fails to find a tvconnect request, make sure that the tvconnect process is writing its
request file to the same directory being read by the TotalView client.

For example, the client may read the wrong directory if your home directory on the node where tvconnect is run-
ning is different than the node where the TotalView client is running.

To work around this problem, set the environment variable TV_REVERSE_CONNECT_DIR.

When setting this variable, make sure that it points to a directory accessible by both the tvconnect and TotalView
client processes, and that it meets all the ownership and permission requirements.

266

 Preferences

 About Preferences on page 267

 Action Points on page 268

 Display Settings on page 269

 Tool Bar on page 271

 Search Path on page 272

 Parallel Configuration on page 275

 Remote Connection Settings on page 277

About Preferences 267

Preferences

About Preferences
Customize aspects of TotalView using the Settings toolbar or by selecting File | Preferences, including:

 Action Points on page 268

 Display Settings on page 269

 Tool Bar on page 271

 Search Path on page 272

 Parallel Configuration on page 275

Preferences take effect afterTotalView restarts.

Action Points 268

Preferences

Action Points

Figure 95, Preferences: Action Points

This dialog box controls action point behavior:

 Automatically focus on threads/processes at breakpoint

If selected, TotalView automatically focuses on the active thread and/or process when your program reaches
a breakpoint. Unlike other action point preferences, this preference changes how existing action points
behave. For more information, see the TV::GUI::pop_at_breakpoint variable in the TotalView Reference
Guide.

 Load action point file automatically

When set, TotalView automatically loads action points when it loads a file. For more information, see the
Action Point > Load All command and the TV::auto_load_actionpoints variable in the TotalView Reference
Guide.

 Save action point file on exit

When set, TotalView automatically saves action points to an action points file when you exit. For more infor-
mation, see the Action Point > Save All command and the TV::auto_save_breakpoints variable in the
TotalView Reference Guide.

Display Settings 269

Preferences

Display Settings
 Appearance: light or dark theme

 User Interface Style: new UI or Classic

 Font Size: small to extra large

NOTE: These preference settings require a restart.

Figure 96, Preferences: Display Settings

Appearance

 Light: Light-colored-background with dark text

 Dark: Dark-colored background with light text

Display Settings 270

Preferences

NOTE: This setting is overridden if you provide the option -theme light/dark when start-
ing TotalView.

User Interface Style

 New Interface: Modern, dockable style user interface with improved low to medium scale multi-
process and multi-thread dynamic analysis and debugging.

 Classic Interface: Traditional, dedicated window for very high-scale multi-process dynamic analysis
and debugging.

NOTE: The User Interface Style preference is ignored if you start TotalView using the
command line option -newUI or have set the TVNEWUI environment variable.

Font Size

Adjust the slider to change the font size for the UI from small to extra large. The default is medium.

Tool Bar 271

Preferences

Tool Bar
Figure 97, Preferences: Tool Bar Visibility

This dialog displays or hides the toolbars, which you can also do by right-clicking in the menu/toolbar area and
selecting its toggle menu items. Use the checkbox under Tool Bar Text to show or hide toolbar text.

Search Path 272

Preferences

Search Path
The Search Path tab customizes the locations in which TotalView searches for executables, source files, and
object files.

TotalView uses a number of system variables to determine where to look for source files, executables, and object
files. You can see these variables in the Command Line view by entering dset *PATH* to display all variables
with “PATH” in the name:

d1.<> dset *PATH*
EXECUTABLE_PATH {}
EXECUTABLE_SEARCH_PATH {${EXECUTABLE_PATH}:${PATH}:.}
OBJECT_SEARCH_PATH {${COMPILATION_DIRECTORY}:${EXECUTABLE_PATH}:${EXECUTABLE_DIRECTORY}:
$links(${EXECUTABLE_DIRECTORY}):.:${TOTALVIEW_SRC}}
SHARED_LIBRARY_SEARCH_PATH {${EXECUTABLE_DIRECTORY}}
SOURCE_SEARCH_PATH {${COMPILATION_DIRECTORY}:${EXECUTABLE_PATH}:${EXECUTABLE_DIRECTORY}:
$links(${EXECUTABLE_DIRECTORY}):.:${TOTALVIEW_SRC}}
...
Notice that EXECUTABLE_PATH is initially undefined, and that it is included in the other search paths (except for
SHARED_LIBRARY_SEARCH_PATH).

NOTE: You should not remove EXECUTABLE_PATH from the other variables or this preferences mech-
anism will not work.

If you have additional locations where you want TotalView to search for source files, executables, and objects files,
you can define EXECUTABLE_PATH in the Preferences dialog.

Search Path 273

Preferences

Figure 98, Preferences: Search Path Configuration

To add a path, click on Add new path and start typing. The interface accepts only one path per line. If you type
in two or more paths separated by colons, they are divided into separate lines when you click Apply. Click the Sub-
directories box to search recursively beginning at the specified directory as root. Use the up and down icons to
adjust the search order.

NOTE: Long search paths have a tendency to slow performance as TotalView frequently traverses the
search path to create an accurate target environment.

Selecting the Subdirectories checkbox if the root directory is at the top of a deep directory tree
adds multiple paths to the search list, potentially degrading performance.

When you are done, click Apply o save the changes, or OK to save and close the dialog.

Search Path 274

Preferences

Figure 99, Preferences: Search Path Configuration, Add a New Path

To edit an entry, double-click on the entry to engage editing mode. To delete an entry, right-click on the entry,
which brings up a context menu with a delete function.

The View as Text button shows you the EXECUTABLE_PATH variable as it would appear in the command line
interface.

Figure 100, Preferences: Search Path Configuration, Edit an Entry

This view is also editable, allowing you to add, remove, or reorder paths as you would on the command line.
Notice that the path specified for recursive search is enclosed in the $tree() function, which automatically adds
the paths below the specified root.

Parallel Configuration 275

Preferences

Parallel Configuration
This menu allows you to configure the parallel attach behaviors for debugging sessions, choosing:

 How to attach to started processes

 Whether processes should continue running or should stop after attaching

 dbfork options

NOTE: You can start MPI jobs in two ways. You can directly invoke TotalView on your program (which
is identical to entering arguments into the Parallel Session Dialog or other types of debugging
sessions available from the File menu) or by directly or indirectly involving a starter program
such as poe or mpirun. TotalView refers to these configuration settings only when it is directly
invoked on a starter program. For programs started by TotalView, the program actually exe-
cutes in the same way as a non-parallel program. That is, all processes created are part of the
same control group, and TotalView allows this control group to run freely.

Figure 101, Preferences: Parallel Configuration

Parallel Configuration 276

Preferences

 Attach Behavior: Choose the action to take when processes begin execution. Either automatically
attach to all executing processes, attach to none, or launch a pop-up asking what to do. The default
is “Attach to all processes.”

 After Attach Behavior: Choose the action to take after attaching to started processes. Either stop
the processes to easily set breakpoints, launch a pop-up dialog asking what to do, or continue
running the processes. The default is “Ask what to do.”

 dbfork Attach Behavior: Choose whether or not the debugger attaches to child processes linked
with dbfork. The default is “Attach.”

RELATED TOPICS
Linking with the dbfork Library Linking with the dbfork Library on page 573 and the

TV::dbfork variable

More about controlling how TotalView attaches
to processes

The TV::parallel_attach variable in the TotalView Refer-
ence Guide

More about how TotalView stops processes. The TV::parallel_stop variable in the TotalView Refer-
ence Guide

Remote Connection Settings 277

Preferences

Remote Connection Settings
Configure a remote connection on this page.

Figure 102, Preferences: Remote Connection Settings

For details, see TotalView Remote Connections on page 390.

 278

PART III Parallel Debugging

 About Parallel Debugging in TotalView on page 279

An overview of some of TotalView’s features that support parallel debugging

 Setting Up Parallel Sessions on page 286

How to set up MPI and other parallel sessions in TotalView

 Debugging OpenMP Applications on page 325

Configuring TotalView for debugging OpenMP applications, using the OpenMP view, and filtering the call
stack.

 Controlling fork, vfork, and execve Handling on page 338

Controlling how TotalView handles system calls to execve(), fork(), vfork(), and clone().

 Group, Process, and Thread Control on page 342

The TotalView process/thread model and how to manage debugging multiple processes and threads.

 Scalability in HPC Computing Environments on page 376

TotalView’s features and configurations related to scalability.

279

About Parallel Debugging in
TotalView

TotalView is designed to debug multi-process, multi-threaded programs, with a rich feature set to support
fine-grained control over individual or multiple threads and processes. This level of control makes it possible
to quickly resolve problems like deadlocks or race conditions in a complex program that spawns thousands of
processes and threads across a broad network of computer nodes.

When your program creates processes and threads, TotalView can automatically bring them under its control,
whether they are local or remote. If the processes are already running, TotalView can attach to them as well,
avoiding the need to run multiple debuggers.

TotalView places a debugger server process on each remote node as it is launched that then communicates
with the main TotalView client process. This debugging architecture gives you a central location from which
you can manage and examine all aspects of your program.

This chapter introduces some tools and features that support parallel debugging.

 Parallel Program Execution Models on page 280

 Viewing Process and Thread State on page 281

 Controlling Program Execution on page 282

 Configuring TotalView for Parallel Debugging on page 285

Parallel Program Execution Models 280

About Parallel Debugging in TotalView

Parallel Program Execution Models
TotalView supports the popular parallel execution models including MPI, OpenMP, SGI shared memory (shmem),
Global Arrays, UPC, CAF, fork/exec, and pthreads.

RELATED TOPICS
Starting a parallel debugging session Debug a Parallel Program on page 29

OpenMP applications Debugging OpenMP Applications on page 325

Hybrid OpenMP/MPI programs Hybrid Programming: Combining OpenMP with MPI on
page 336

Setting up parallel programming sessions “Setting Up Parallel Debugging Sessions” and “Setting Up MPI
Debugging Sessions” in the Classic TotalView User Guide.

Viewing Process and Thread State 281

About Parallel Debugging in TotalView

Viewing Process and Thread State
You can quickly view process and thread state in the Process and Threads view.

The Process and Threads view displays all processes and threads being debugged, along with their process state
(i.e., stopped, running, at breakpoint, etc.). Selecting a process or thread sets the focus, which then determines
the display in the Call Stack, Local Variables view, the Source view, and the Data View.

Figure 103, The Process and Threads view

RELATED TOPICS
Controlling individual threads and processes to
analyze and isolate problems

Group, Process, and Thread Control on page 342

The Process and Threads view Processes and Threads View Basics on page 204

Controlling Program Execution 282

About Parallel Debugging in TotalView

Controlling Program Execution
Commands controlling execution operate on the current focus — either an individual thread or process, or a
group of threads and processes. You can individually stop, start, step, and examine any thread or process, or per-
form these actions on a group.

In the UI, the focus of any execution command is the thread selected in the Processes and Threads view, and the
width control selected from the Focus menu.

In Figure 104, the focus is on thread 0.1, and the width selected in the Focus menu is Process.

Figure 104, Selecting the focus in the UI

In the CLI, use the dfocus command with an arena specifier to define the thread of interest, the process of inter-
est, the width, and optionally, a group on which to operate.

You can also synchronize execution across threads or processes using a barrierpoint, which holds any threads or
processes in a group until each reaches a particular point.

RELATED TOPICS
The dfocus command dfocus in "CLI Commands" in the TotalView Reference Guide

Focus and execution commands Individual Execution Commands on page 368

Setting the focus to Group (Share) to run just a
single share group

Executing a Single Share Group on page 348

Controlling Program Execution TotalView Groups 283

About Parallel Debugging in TotalView

TotalView Groups
TotalView automatically organizes your processes and threads into groups, allowing you to view, execute, and
control any individual thread, process, or group of threads and processes. TotalView defines built-in groups that
help support full, asynchronous debugging control over your program.

For example, you can:

 Single step one or a small set of processes rather than all of them

 Use Group > Detach and Process > Detach to isolate certain processes or groups and remove
them from debugging control.

 Use Run To or breakpoints to control large groups of processes

 Control breakpoints when using the fork() or execve() functions

 Share action points across multiple processes or set them in individual processes

Using the CLI to control program execution Controlling Program Execution Using CLI Commands on
page 248

Holding an individual process or thread to syn-
chronize control execution

Holding and Releasing Processes and Threads on page 371

Introduction to barrier points Synchronizing Execution with Barrier Points on page 284

Finely controlling focus using arenas Arenas and P/T Sets on page 352

RELATED TOPICS
Using Run To to control stepping and execution Synchronizing Processes and Threads on page 371

Setting the focus to Group (Share) to run just a
single share group

Executing a Single Share Group on page 348

Control breakpoints when using fork() or
execve()

Setting Breakpoints When Using the fork()/execve() Func-
tions on page 94

Control an action point’s scope, or width, to stop
a group of processes, a single process or a single
thread

Controlling an Action Point’s Width on page 124

RELATED TOPICS

Controlling Program Execution Synchronizing Execution with Barrier Points 284

About Parallel Debugging in TotalView

Synchronizing Execution with Barrier Points
You can synchronize execution of threads and processes either manually using a hold command, or automati-
cally by setting an action point called a barrierpoint. These two tools can be used together for fine-grained
execution control. For instance, if a process or thread is held at a barrier point you can manually release it and
then run it without first waiting for all other processes or threads in the group to reach that barrier.

When a process or a thread is held, it ignores any command to resume executing. For example, assume that you
place a hold on a process in a control group that contains three processes. If you select Group > Go, two of the
three processes resume executing. The held process ignores the Go command.

RELATED TOPICS
Setting barrier points Setting a Barrier Breakpoint on page 117

Configuring TotalView for Parallel Debugging Synchronizing Execution with Barrier Points 285

About Parallel Debugging in TotalView

Configuring TotalView for Parallel Debugging
TotalView provides features and performance enhancements for scalable debugging in today’s HPC computing
environments. In most cases, these require no special configuration. You can, however, customize a debugging
session when working with multiprocess/multithreaded applications.

For example, you can configure how TotalView handles a dlopen event to support better performance if multiple
shared libraries are being opened, or the debugger is processing multiple processes. You can also customize how
TotalView handles system calls to execve() and fork(), in addition to other enhancements.

RELATED TOPICS
Configuring TotalView for scalability Scalability in HPC Computing Environments on page 376

Configuring dlopen system calls dlopen Options for Scalability in the TotalView Reference
Guide

286

Setting Up Parallel Sessions

You can set up parallel debugging or MPI sessions using the UI’s Session Editor or from a shell, depending on
your system and its requirements.

NOTE: If you are using TotalView Developer / Developer for HPC, all your program’s processes
must execute on the computer on which you installed TotalView.

Included are these topics:

 Parallel Program Setup in the UI on page 288

 Non-MPI Program Setup on page 289

 The SLURM Resource Manager on page 289

 Cray XT/XE/XK/XC Applications on page 290

 Global Arrays Applications (Classic UI Only) on page 292

 Shared Memory (SHMEM) Code on page 294

 UPC Programs on page 295

 CoArray Fortran (CAF) Programs on page 299

 MPI Program Setup on page 302

 MPICH Applications on page 302

 MPICH2 Applications on page 306

 Cray MPI Applications on page 308

 IBM MPI Parallel Environment (PE) Applications on page 308

 Open MPI Applications on page 312

 QSW RMS Applications on page 313

 287

Setting Up Parallel Sessions

This chapter also includes these topics specific to MPI applications:

Troubleshooting MPI Startup on page 316

Using ReplayEngine with Infiniband MPIs on page 317

MPI Startup Customizations on page 319

Parallel Program Setup in the UI 288

Setting Up Parallel Sessions

Parallel Program Setup in the UI
To set up a parallel session in the UI, from the Start Page, select Debug a Parallel Program to launch the Parallel
Session dialog. See Debug a Parallel Program on page 29.

Programs started using the UI have some limitations: program launch does not use the information you set for
single-process and bulk server launching, and you cannot use the Attach Subset command.

MPI programs use a starter program such as mpirun. You can start these MPI programs in two ways: with the
starter program under TotalView control, or using the UI, in which case the starter program is not under TotalView
control.

Non-MPI Program Setup The SLURM Resource Manager 289

Setting Up Parallel Sessions

Non-MPI Program Setup
This section discusses parallel computing models that are not MPI-based.

 The SLURM Resource Manager on page 289

 Cray XT/XE/XK/XC Applications on page 290

 Global Arrays Applications (Classic UI Only) on page 292

 Shared Memory (SHMEM) Code on page 294

 UPC Programs on page 295

 CoArray Fortran (CAF) Programs on page 299

The SLURM Resource Manager
TotalView supports the SLURM resource manager. Here is some information copied from the SLURM website
(https://hpc.llnl.gov/documentation/tutorials/livermore-computing-linux-commodity-clusters-overview-part-
one).

SLURM is an open-source resource manager designed for Linux clusters of all sizes. It provides three key functions.
First it allocates exclusive and/or non-exclusive access to resources (computer nodes) to users for some duration of
time so they can perform work. Second, it provides a framework for starting, executing, and monitoring work (typi-
cally a parallel job) on a set of allocated nodes. Finally, it arbitrates conflicting requests for resources by managing a
queue of pending work.
SLURM is not a sophisticated batch system, but it does provide an Applications Programming Interface (API) for in-
tegration with external schedulers such as the Maui Scheduler. While other resource managers do exist, SLURM is
unique in several respects:

 Its source code is freely available under the GNU General Public License.

 It is designed to operate in a heterogeneous cluster with up to thousands of nodes.

 It is portable; written in C with a GNU autoconf configuration engine. While initially written for
Linux, other UNIX-like operating systems should be easy porting targets. A plugin mechanism exists
to support various interconnects, authentication mechanisms, schedulers, etc.

 SLURM is highly tolerant of system failures, including failure of the node executing its control
functions.

 It is simple enough for the motivated end user to understand its source and add functionality.

https://hpc.llnl.gov/documentation/tutorials/livermore-computing-linux-commodity-clusters-overview-part-one
https://hpc.llnl.gov/documentation/tutorials/livermore-computing-linux-commodity-clusters-overview-part-one

Non-MPI Program Setup Cray XT/XE/XK/XC Applications 290

Setting Up Parallel Sessions

Cray XT/XE/XK/XC Applications
The Cray XT/XE/XK/XC series of supercomputers are supported by the TotalView Linux x86_64 and Linux ARM64
(aarch64) distributions. The discussion here is based on running applications using the Cray Linux Environment
(CLE). TotalView supports launching application program

s using either PBS Pro with ALPS aprun or SLURM srun.

Starting TotalView on Cray

Because the configuration of most Cray systems typically varies from site to site, the following provides only gen-
eral guidelines for starting TotalView on your application. Please consult your site's documentation for the specific
steps needed to debug a program using TotalView on your Cray system.

File System Considerations

Place your application to debug on a file system that is shared across all Cray node types, such as the service,
elogin, login/MOM, and/or compute nodes. This allows you to compile and debug your application across node
types.

Further, make sure that your $HOME/.totalview directory is on a shared file system that is common across all
Cray node types to ensure that you can use the tvconnect feature in batch scripts. For more information, see
Reverse Connections on page 256.

Starting TotalView

TotalView typically runs interactively. If your site has not designated any compute nodes for interactive process-
ing, you can allocate compute nodes for interactive use. Use PBS Pro's qsub -I or SLURM's salloc command to
allocate an interactive job. Be sure that your X11 DISPLAY environment variable is propagated or set properly.
See "man qsub" or "man salloc" for more information on interactive jobs.

If TotalView is installed on your system, load it into your user environment:
module load totalview

Use the following command to start TotalView where mpi_starter is the MPI starter program for your system,
such as aprun or srun.

RELATED TOPICS
Tips for parallel debugging “General Parallel Debugging Tips” in the Classic

TotalView User Guide’s chapter “Debugging Strategies
for Parallel Applications.”

Setting up a parallel debugging session using
the Session Editor

Debug a Parallel Program on page 29

Non-MPI Program Setup Cray XT/XE/XK/XC Applications 291

Setting Up Parallel Sessions

The CLI:
totalviewcli -tv_options -args mpi_starter [mpi_options] application_name
[application_arguments]

The GUI:
totalview -tv_options -args mpi_starter [mpi_options] application_name [application_arguments]

TotalView is not able to stop your program before it calls MPI_Init() when using ALPS. While this is typically at the
beginning of main(), the actual location depends on how you’ve written the program. This means that if you set a
breakpoint before the MPI_Init() call, your program will not hit it because the statement upon which you set the
breakpoint will have already executed. On the other hand, SLURM will stop your program before it enters main(),
which allows you to debug the statements before MPI_Init() is called.

Example 1: Interactive Jobs Using qsub and aprun

This example shows how you can start TotalView on a program named a.out running in an interactive job using
qsub and aprun.

n9610@crystal:~> qsub -I -X -l nodes=4
qsub: waiting for job 599856.sdb to start
qsub: job 599856.sdb ready
Directory: /home/users/n9610
Mon Nov 4 17:23:28 CST 2019
n9610@crystal2:~> cd shared/rctest
n9610@crystal2:~/shared/rctest> module load totalview
n9610@crystal2:~/shared/rctest> totalview -verbosity errors -args aprun -n 4 ./a.out
Example 2: Interactive jobs using salloc and srun

Similarly, you can debug an interactive job using salloc and srun if your Cray system uses SLURM.

This example shows how to submit a SLURM batch job using tvconnect in the batch script. After the batch job
starts running, TotalView is started to accept the reverse-connect request.

n9610@jupiter-elogin:~/shared/rctest> cat slurm-script.bash
#!/bin/bash -x
#SBATCH --qos=debug
#SBATCH --time=00:30:00
#SBATCH --nodes=4
#SBATCH --tasks-per-node=1
#SBATCH --constraint=haswell
module load totalview
tvconnect srun -n 4 tx_basic_mpi
n9610@jupiter-elogin:~/shared/rctest> sbatch -C BW28 slurm-script.bash
Submitted batch job 1374150
n9610@jupiter-elogin:~/shared/rctest> squeue -u $USER
 JOBID USER ACCOUNT NAME ST REASON START_TIME TIME TIME_LEFT NODES CPUS
1374150 n9610 (null) slurm-script.b R None 2019-11-05T09:31:53 0:16 29:44 4 8
n9610@jupiter-elogin:~/shared/rctest> module load totalview
n9610@jupiter-elogin:~/shared/rctest> totalview

Non-MPI Program Setup Global Arrays Applications (Classic UI Only) 292

Setting Up Parallel Sessions

Support for Cray Abnormal Termination Processing (ATP)

Cray's ATP module stops a running job at the moment it crashes. This allows you to attach TotalView to the held
job and begin debugging it. To hold a job as it is crashing you must set the ATP_HOLD_TIME environment variable
before launching your job with aprun or srun.

When your job crashes, the MPI starter process outputs a message stating that your job has crashed and that
ATP is holding it. You can now attach TotalView tothe aprun or srun process using the normal attach procedure
(see Attach to Process on page 32).

For more information on ATP, see the Cray intro_atp man page.

Special Requirements for Using ReplayEngine

On Crayx86_64 systems, the MPIs use RDMA techniques, similar to Infiniband MPIs. When using ReplayEngine on
MPI programs, certain environment variable settings must be in effect for the MPI rank processes. These settings
ensure that memory mapping operations are visible to ReplayEngine. The required environment variable settings
are:

 MPICH_SMP_SINGLE_COPY_OFF=1

 LD_PRELOAD: Set to include a preload library, which can be found under the TotalView installation
directory at toolworks/totalview.<version>/linux-x86-64/lib/
undodb_infiniband_preload_x64.so.

When using APLS, these settings may be applied with the aprun -e option. For example, to have TotalView launch
an MPI program with ReplayEngine enabled, use a command similar to this:

totalview -replay -args aprun -n 8 \
-e MPICH_SMP_SINGLE_COPY_OFF=1 \
-e LD_PRELOAD=/<path>/undodb_infiniband_preload_x64.so \
myprogram
When using SLURM, these settings may be applied with the srun --export option. For example:
totalview -replay -args srun -n 8 \
--export=ALL,MPICH_SMP_SINGLE_COPY_OFF=1,LD_PRELOAD=/<path>/undodb_infiniband_pre-
load_x64.so \
myprogram

 Global Arrays Applications (Classic UI Only)
The following paragraphs, which are copied from the Global Arrays home site (http://hpc.pnl.gov/globalarrays),
describe the global arrays environment:

http://hpc.pnl.gov/globalarrays/

Non-MPI Program Setup Global Arrays Applications (Classic UI Only) 293

Setting Up Parallel Sessions

“The Global Arrays (GA) toolkit provides a shared memory style programming environment in the context of distrib-
uted array data structures (called “global arrays”). From the user perspective, a global array can be used as if it was
stored in shared memory. All details of the data distribution, addressing, and data access are encapsulated in the
global array objects. Information about the actual data distribution and locality can be easily obtained and taken ad-
vantage of whenever data locality is important. The primary target architectures for which GA was developed are
massively-parallel distributed-memory and scalable shared-memory systems.
“GA divides logically shared data structures into “local” and “remote” portions. It recognizes variable data transfer
costs required to access the data depending on the proximity attributes. A local portion of the shared memory is as-
sumed to be faster to access and the remainder (remote portion) is considered slower to access. These differences
do not hinder the ease-of-use since the library provides uniform access mechanisms for all the shared data regard-
less where the referenced data is located. In addition, any processes can access a local portion of the shared data
directly/in-place like any other data in process local memory. Access to other portions of the shared data must be
done through the GA library calls.
“GA was designed to complement rather than substitute for the message-passing model, and it allows the user to
combine shared-memory and message-passing styles of programming in the same program. GA inherits an execu-
tion environment from a message-passing library (w.r.t. processes, file descriptors etc.) that started the parallel pro-
gram.”

The global arrays environment has a few unique attributes. Using TotalView, you can:

 Display a list of a program's global arrays.

 Dive from this list of global variables to see the contents of a global array in C or Fortran format.

 Cast the data so that TotalView interprets data as a global array handle. This means that TotalView
displays the information as a global array. Specifically, casting to $GA forces the Fortran
interpretation; casting to $ga forces the C interpretation; and casting to $Ga uses the language in
the current context.

In the Array Statistics view, the commands that operate on a local array, such as slicing and obtaining statistics,
also operate on global arrays.

The command used to start TotalView depends on your operating system. For example, the following command
starts TotalView on a program invoked using prun using three processes:
totalview prun -a -N 3 boltz.x

Before your program starts parallel execution, a Question dialog launches so you can stop the job to set break-
points or inspect the program before it begins execution.

After your program hits a breakpoint, you can either use the CLI command dga to inspect your program’s global
arrays, or use the Classic UI’s Global Arrays Window.

dga

Non-MPI Program Setup Shared Memory (SHMEM) Code 294

Setting Up Parallel Sessions

Classic UI only:

Figure 105, Global Arrays Windows (Classic UI only)

The arrays named in this window are displayed using their C and Fortran type names. Diving on the line that con-
tains the type definition displays Variable Windows that contain information about that array.

After TotalView displays this information, you can use other standard commands and operations on the array. For
example, you can use the slice and filter operations and the commands that visualize, obtain statistics, and show
the nodes from which the data was obtained.

You can cast the variable into a global array using either $ga for a C Language cast or $GA for a Fortran cast.

Shared Memory (SHMEM) Code
TotalView supports programs using the distributed memory access Shared Memory (SHMEM) library on Quadrics
RMS systems and SGI Altix systems. The SHMEM library allows processes to read and write data stored in the
memory of other processes. This library also provides collective operations.

Debugging a SHMEM RMS or SGI Altix program is no different than debugging any other program that uses a
starter program. For example:

RELATED TOPICS
The dga command to view global arrays dga in the TotalView Reference Guide

The Global Array window in the Classic UI “Process Window: Tools Menu Commands: Tools >
Global Arrays in the Classic UI Online Help

Non-MPI Program Setup UPC Programs 295

Setting Up Parallel Sessions

totalview srun -a my_program

UPC Programs
TotalView supports debugging UPC programs on Linux x86 platforms. This section discusses only the UPC-spe-
cific features of TotalView. It is not an introduction to the UPC Language. For an introduction to the UPC language,
see Introduction to Unified Parallel C: A PGAS C.

NOTE: When debugging UPC code, TotalView requires help from a UPC assistant library that your
compiler vendor provides. You need to include the location of this library in your LD_LI-
BRARY_PATH environment variable. TotalView also provides assistants that you can use.

Topics in this section are:

 Invoking TotalView on page 295

 Viewing Shared Objects (Classic UI Only) on page 295

 Displaying Pointer to Shared Variables (Classic UI Only) on page 297

Invoking TotalView

The way in which you invoke TotalView on a UPC program is straight-forward. However, this procedure depends
on the parallel technology you are using. Here are a couple of examples:

 For Quadrics RMS:
totalview prun -a prog_upc_args

 For MPICH and LAM
totalview mpirun -a -np 2 prog_upc_args

Viewing Shared Objects (Classic UI Only)

TotalView displays UPC shared objects, and fetches data from the UPC thread with which it has an affinity. For
example, TotalView always fetches shared scalar variables from thread 0.

The upper-left screen in Figure 106 displays elements of a large shared array. You can manipulate and examine
shared arrays the same as any other array. For example, you can slice, filter, obtain statistical information, and so
on. The lower-right screen shows a slice of this array.

https://cpb-us-e1.wpmucdn.com/blogs.gwu.edu/dist/f/528/files/2017/05/lecture5-2nn783s.pdf

Non-MPI Program Setup UPC Programs 296

Setting Up Parallel Sessions

In this figure, TotalView displays the value of a pointer-to-shared variable whose target is the array in the Shared
Address area. As usual, the address in the process appears in the top left of the display.

Figure 106, A Sliced UPC Array

Non-MPI Program Setup UPC Programs 297

Setting Up Parallel Sessions

Since the array is shared, it has an additional property: the element’s affinity. You can display this information if
you right-click your mouse on the header and tell TotalView to display Nodes.

You can also use the Tools > Visualize Distribution command to visualize this array. For more information on
visualization, see “Array Visualizer” in the chapter “Visualizing Programs and Data” in the Classic TotalView User
Guide.

Displaying Pointer to Shared Variables (Classic UI Only)

TotalView understands pointer-to-shared data and displays the components of the data, as well as the target of
the pointer to shared variables. For example, Figure 108 shows this data being displayed:

Figure 107, UPC Variable Window Showing Nodes

Figure 108, A Pointer to a Shared Variable

Non-MPI Program Setup UPC Programs 298

Setting Up Parallel Sessions

In this figure, note the following:

 Because the Type field displays the full type name, this is a pointer to a shared int with a block size
of 10.

 TotalView also displays the upc_threadof ("T0"), the upc_phaseof ("P0"), and the upc_addrfield
(0x0x10010ec4) components of this variable.

In the same way that TotalView normally shows the target of a pointer variable, it also shows the target of a UPC
pointer variable. When dereferencing a UPC pointer, TotalView fetches the target of the pointer from the UPC
thread with which the pointer has affinity.

You can update the pointer by selecting the pointer value and editing the thread, phase, or address values. If the
phase is corrupt, you’ll see something like the following in the Value area:
T0;P6;0x3ffc0003b00 <Bad phase [max 4]> ->
 0xc0003c80 (-1073726336)

In this example, the pointer is invalid because the phase is outside the legal range. TotalView displays a similar
message if the thread is invalid.

Since the pointer itself is not shared, you can use the TView > Show Across commands to display the value from
each of the UPC threads.

Figure 109, Pointer to a Shared Variable

Non-MPI Program Setup CoArray Fortran (CAF) Programs 299

Setting Up Parallel Sessions

CoArray Fortran (CAF) Programs
TotalView has partial support for debugging CoArray Fortran (CAF) programs on Cray platforms. This section dis-
cusses the parts of TotalView that support CAF-specific features. CoArray Fortran allows a programmer to
distribute parts of an array over a set of processes using an augmented Fortran array syntax. The processes in a
CAF job share the same executable. The processes are assigned "image ids" starting at image one.

When debugging CAF code, TotalView requires help from a CAF assistant library that your compiler vendor pro-
vides. You need to include the location of this library in your LD_LIBRARY_PATH environment variable. TotalView
also provides assistants that you can use.

Because TotalView support is partial, expressions that attempt to re-cast CAF types or change the visible slices of
CAF types are likely to fail.

Invoking TotalView

CAF programs commonly rely on an underlying parallel protocol such as MPI. They are started the same way as
other programs using the same parallel technology.

On Cray machines that use aprun, invoking a four-image job on TotalView may look like this:
totalview aprun -a -n 4 caf_program caf_program_args

Viewing CAF Programs (Classic UI Only)

For a CAF program, the process id in the TotalView Process window shows the CAF image id. TotalView shows the
correct dimensions and co-dimensions of arrays and the co-dimensions of scalars.

When diving on a CAF array or scalar, TotalView shows the data local to the current image. Diving across pro-
cesses shows the entire distributed array.

Non-MPI Program Setup CoArray Fortran (CAF) Programs 300

Setting Up Parallel Sessions

If you use the array viewer, statistics, and visualizer commands from the Tools menu when viewing a CAF array
across processes, the commands treat the co-array dimensions much like standard array dimensions.

Using CLI with CAF

The dprint command in the CLI displays the data in CAF arrays in a similar way to the above. When the focus is a
process, dprint lists the local values. When the focus is the shared group containing the CAF images, dprint lists
the entire co-array.

Figure 110, Diving on CAF array “y”

Figure 111, Diving on CAF array “y” across processes

Non-MPI Program Setup CoArray Fortran (CAF) Programs 301

Setting Up Parallel Sessions

MPI Program Setup MPICH Applications 302

Setting Up Parallel Sessions

MPI Program Setup

NOTE: This section provides non-UI setup information for MPI programs. In most cases, you can just
launch an MPI session from the UI without referring to the details here. See Debug a Parallel
Program on page 29 in the Creating and Managing Sessions chapter.

 MPICH Applications on page 302

 MPICH2 Applications on page 306

 Cray MPI Applications on page 308

 IBM MPI Parallel Environment (PE) Applications on page 308

 Open MPI Applications on page 312

 QSW RMS Applications on page 313

MPICH Applications
To debug Message Passing Interface/Chameleon Standard (MPICH) applications, you must use MPICH version
1.2.3 or later on a homogeneous collection of computers. If you need a copy of MPICH, you can obtain it at no
cost from Argonne National Laboratory at http://www.mpich.org/downloads. (We strongly urge that you use a
later version of MPICH. For versions that work with TotalView, see TotalView Supported Platforms document in
the TotalView distribution at <installdir>/totalview.<version>/doc/pdf or TotalView Supported Plat-
forms on the TotalView documentation website.)

The MPICH library should use the ch_p4, ch_p4mpd, ch_shmem, ch_lfshmem, or ch_mpl devices.

 For networks of workstations, the default MPICH library is ch_p4.

RELATED TOPICS
Setting up a parallel debugging session using the
Session Editor

Debug a Parallel Program on page 29

Scalability configuration in TotalView Scalability in HPC Computing Environments on page 376

Creating startup profiles for environments not
defined by TotalView. These definitions will
appear in the Additional Starter Arguments field
of the Debug New Parallel Program dialog box.

MPI Startup Customizations on page 319

http://www.mpich.org/downloads/
https://help.totalview.io/current/PDFs/TotalView_Platforms_Guide.pdf
https://help.totalview.io/current/PDFs/TotalView_Platforms_Guide.pdf
https://help.totalview.io/

MPI Program Setup MPICH Applications 303

Setting Up Parallel Sessions

 For shared-memory SMP computers, use ch_shmem.

 On an IBM SP computer, use the ch_mpl device.

The MPICH source distribution includes all these devices. Choose the one that best fits your environment when
you configure and build MPICH.

When configuring MPICH, you must ensure that the MPICH library maintains all of the information that TotalView
requires. This means that you must use the -enable-debug option with the MPICH configure command. (Ver-
sions earlier than 1.2 used the --debug option.)

Starting TotalView on an MPICH Job

NOTE: Before you can bring an MPICH job under TotalView’s control, both TotalView and the tvdsvr
must be in your path, most easily set in a login or shell startup script.

For version 1.1.2, the following command-line syntax starts a job under TotalView control:

mpirun [MPICH-arguments] -tv program [program-arguments]

For example:
mpirun -np 4 -tv sendrecv

The MPICH mpirun command obtains information from the TOTALVIEW environment variable and then uses this
information when it starts the first process in the parallel job.

For Version 1.2.4, the syntax changes to the following:

mpirun -dbg=totalview [other_mpich-args] program [program-args]

For example:
mpirun -dbg=totalview -np 4 sendrecv

In this case, mpirun obtains the information it needs from the -dbg command-line option.

In other contexts, setting this environment variable means that you can use different versions of TotalView or
pass command-line options to TotalView.

For example, the following is the C shell command that sets the TOTALVIEW environment variable so that mpi-
run passes the -no_stop_all option to TotalView:

RELATED TOPICS
More information on debugging MPICH
applications

“MPICH Debugging Tips” in the Classic TotalView User Guide’s
chapter “Debugging Strategies for Parallel Applications.”

MPI Program Setup MPICH Applications 304

Setting Up Parallel Sessions

setenv TOTALVIEW "totalview -no_stop_all"
TotalView begins by starting the first process of your job, the master process, under its control. You can then set
breakpoints and begin debugging your code.

On the IBM SP computer with the ch_mpl device, the mpirun command uses the poe command to start an MPI
job. While you still must use the MPICH mpirun (and its -tv option) command to start an MPICH job, the way you
start MPICH differs. For details on using TotalView with poe, see Starting TotalView on a PE Program on
page 310.

Starting TotalView using the ch_p4mpd device is similar to starting TotalView using poe on an IBM computer or
other methods you might use on Sun and HP platforms. In general, you start TotalView using the totalview com-
mand, with the following syntax;

totalview mpirun [totalview_args] -a [mpich-args] program [program-args]

As your program executes, TotalView automatically acquires the processes that are part of your parallel job as
your program creates them. Before TotalView begins to acquire them, it asks if you want to stop the spawned pro-
cesses. If you click Yes, you can stop processes as they are initialized. This lets you check their states or set
breakpoints that are unique to the process. TotalView automatically copies breakpoints from the master process
to the slave processes as it acquires them. Consequently, you don’t have to stop them just to set these
breakpoints.

If you’re using the UI, TotalView updates the view to show these newly acquired processes.

Attaching to an MPICH Job

You can attach to an MPICH application even if it was not started under TotalView control. To attach to an MPICH
application:

1. Start TotalView.

 Select Attach to process on the Start a Debugging Session dialog. A list of processes running on the selected
host displays in the Attach to Running Program(s) dialog.

totalviewcli mpirun [totalview_args] \ -a [mpich-args] program [
program-args]

RELATED TOPICS
More information on attaching to processes “Attaching to Processes Tips” in the Classic TotalView User

Guide’s chapter “Debugging Strategies for Parallel
Applications.”

MPI Program Setup MPICH Applications 305

Setting Up Parallel Sessions

1. Attach to the first MPICH process in your workstation cluster by diving into it.

2. On an IBM SP with the ch_mpi device, attach to the poe process that started your job. For details, see
Starting TotalView on a PE Program on page 310.

Normally, the first MPICH process is the highest process with the correct program name in the process list. Other
instances of the same executable can be:

 The p4 listener processes if MPICH was configured with ch_p4.

 Additional slave processes if MPICH was configured with ch_shmem or ch_lfshmem.

 Additional slave processes if MPICH was configured with ch_p4 and has a file that places multiple
processes on the same computer.

1. After attaching to your program’s processes, a dialog launches where you can choose to also attach to slave
MPICH processes. If you do, press Return or choose Yes. If you do not, choose No.

If you choose Yes, TotalView starts the server processes and acquires all MPICH processes.

Classic UI Only: As an alternative, use the Group > Attach Subset command to predefine what TotalView should
do.

In some situations, the processes you expect to see might not exist (for example, they may crash or exit).
TotalView acquires all the processes it can and then warns you if it cannot attach to some of them. If you attempt
to dive into a process that no longer exists (for example, using a message queue display), you are alerted that the
process no longer exists.

Using MPICH P4 procgroup Files

If you’re using MPICH with a P4 procgroup file (by using the -p4pg option), you must use the same absolute path
name in your procgroup file and on the mpirun command line. For example, if your procgroup file contains a
different path name than that used in the mpirun command, even though this name resolves to the same exe-
cutable, TotalView assumes that it is a different executable, which causes debugging problems.

The following example uses the same absolute path name on the TotalView command line and in the procgroup
file:

dattach executable pid

RELATED TOPICS
More information on attaching to processes “Attaching to Processes Tips” in the Classic TotalView User

Guide’s chapter “Debugging Strategies for Parallel
Applications.”

MPI Program Setup MPICH2 Applications 306

Setting Up Parallel Sessions

% cat p4group
local 1 /users/smith/mympichexe
bigiron 2 /users/smith/mympichexe
% mpirun -p4pg p4group -tv /users/smith/mympichexe

In this example, TotalView does the following:

1. Reads the symbols from mympichexe only once.

2. Places MPICH processes in the same TotalView share group.

3. Names the processes mypichexe.0, mympichexe.1, mympichexe.2, and mympichexe.3.

If TotalView assigns names such as mympichexe<mympichexe>.0, a problem occurred and you need to com-
pare the contents of your procgroup file and mpirun command line.

MPICH2 Applications

NOTE: You should be using MPICH2 version 1.0.5p4 or higher. Earlier versions had problems that
prevented TotalView from attaching to all the processes or viewing message queue data.

Downloading and Configuring MPICH2

You can download the current MPICH2 version from:

http://www.mpich.org/downloads/versions/

If you wish to use all of the TotalView MPI features, you must configure MPICH2. Do this by adding one of the fol-
lowing to the configure script that is within the downloaded information:

- -enable-debuginfo

or

- - -enable-totalview

The configure script looks for the following file:

python2.x/config/Makefile

It fails if the file is not there.

The next steps are:

1. Run make

http://www.mpich.org/downloads/versions/

MPI Program Setup MPICH2 Applications 307

Setting Up Parallel Sessions

2. Run make install

This places the binaries and libraries in the directory specified by the optional - -prefix option.

3. Set the PATH and LD_LIBRARY_PATH to point to the MPICH2 bin and lib directories.

Starting TotalView Debugging on an MPICH2 Hydra Job

As of MPICH2 1.4.1, the default job type for MPICH2 is Hydra. If you are instead using MPD, see Starting
TotalView Debugging on an MPICH2 MPD Job on page 307.

Start a Hydra job as follows:

totalview -args mpiexec mpiexec-args program program-args

You may not see sources to your program at first. If you do see the program, you can set breakpoints. In either
case, press the Go button to start your process. TotalView displays a dialog box when your program goes paral-
lel that allows you to stop execution so you can set breakpoints.

(This is the default behavior. You can change it using the options within File >Preferences >Parallel page. See
Parallel Configuration.)

Starting TotalView Debugging on an MPICH2 MPD Job

You must start the mpd daemon before starting an MPICH2 MPI job.

NOTE: As of MPICH2 1.4.1, the default job type is Hydra, rather than MPD, so if you are using the
default, there is no need to start the daemon. See Starting TotalView Debugging on an MPICH2
Hydra Job on page 307.

Starting the MPI MPD Job with MPD Process Manager

To start the mpd daemon, use the mpdboot command. For example:
mpdboot -n 4 -f hostfile

where:

-n 4

The number of hosts on which you wish to run the daemon. In this example, the daemon runs on four hosts

-f hostfile

Lists the hosts on which the application will run. In this example, a file named hostfile contains this list.

You are now ready to start debugging your application.

MPI Program Setup Cray MPI Applications 308

Setting Up Parallel Sessions

Starting an MPICH2 MPD Job

Start an MPICH2 MPD job in one of the following ways:

mpiexec mpi-args -tv program -a program-args
This command tells MPI to start TotalView. You must have set the TOTALVIEW environment variable with the path
to TotalView’s executable when you start a program using mpiexec. For example:

 setenv TOTALVIEW \
 /opt/totalview/bin/totalview

This method of starting TotalView does not let you restart your program without exiting TotalView and you will
not be able to attach to a running MPI job.

totalview python -a `which mpiexec` \ -tvsu mpiexec-args program program-args

This command lets you restart your MPICH2 job. It also lets you attach to a running MPICH2 job by using the At-
tach to a Running Program dialog box. You need to be careful that you attach to the right instance of python
as it is likely that a few instances are running. The one to which you want to attach has no attached children—
child processes are indented with a line showing the connection to the parent.

You may not see sources to your program at first. If you do see the program, you can set breakpoints. In either
case, press the Go button to start your process. TotalView displays a dialog box when your program goes paral-
lel that allows you to stop execution. (This is the default behavior. You can change it using the options within File
>Preferences >Parallel page.)

You will also need to set the TOTALVIEW environment variable as indicated in the previous method.

Cray MPI Applications
Specific information on debugging Cray MPI applications is discussed in Cray XT/XE/XK/XC Applications on
page 290 for information.

IBM MPI Parallel Environment (PE) Applications
You can debug IBM MPI Parallel Environment (PE) applications on the IBM RS/6000 and SP platforms.

To take advantage of TotalView’s ability to automatically acquire processes, you must be using release 3,1 or later
of the Parallel Environment for AIX.

Topics in this section are:

 Preparing to Debug a PE -Application on page 309

 Starting TotalView on a PE Program on page 310

 Setting Breakpoints on page 310

MPI Program Setup IBM MPI Parallel Environment (PE) Applications 309

Setting Up Parallel Sessions

 Starting Parallel Tasks on page 310

 Attaching to a PE Job on page 311

Preparing to Debug a PE -Application

The following sections describe what you must do before TotalView can debug a PE application.

Using Switch-Based Communications

If you’re using switch-based communications (either IP over the switch or user space) on an SP computer, configure
your PE debugging session so that TotalView can use IP over the switch for communicating with the TotalView
Server (tvdsvr). Do this by setting the -adapter_use option to shared and the -cpu_use option to multiple, as
follows:

 If you’re using a PE host file, add shared multiple after all host names or pool IDs in the host file.

 Always use the following arguments on the poe command line:
-adapter_use shared -cpu_use multiple

If you don’t want to set these arguments on the poe command line, set the following environment variables
before starting poe:
setenv MP_ADAPTER_USE shared
setenv MP_CPU_USE multiple

When using IP over the switch, the default is usually shared adapter use and multiple cpu use; we recommend
that you set them explicitly using one of these techniques. You must run TotalView on an SP or SP2 node. Since
TotalView will be using IP over the switch in this case, you cannot run TotalView on an RS/6000 workstation.

Performing a Remote Login

You must be able to perform a remote login using the ssh command. You also need to enable remote logins by
adding the host name of the remote node to the /etc/hosts.equiv file or to your .rhosts file.

When the program is using switch-based communications, TotalView tries to start the TotalView Server by using
the ssh command with the switch host name of the node.

Setting Timeouts

If you receive communications timeouts, you can set the value of the MP_TIMEOUT environment variable; for
example:
setenv MP_TIMEOUT 1200

If this variable isn’t set, TotalView uses a timeout value of 600 seconds.

MPI Program Setup IBM MPI Parallel Environment (PE) Applications 310

Setting Up Parallel Sessions

Starting TotalView on a PE Program

The following is the syntax for running Parallel Environment (PE) programs from the command line:

program [arguments] [pe_arguments]

You can also use the poe command to run programs as follows:

poe program [arguments] [pe_arguments]

If, however, you start TotalView on a PE application, you must start poe as TotalView’s target using the following
syntax:

{ totalview | totalviewcli } poe -a program [arguments] [PE_arguments]

For example:
totalview poe -a sendrecv 500 -rmpool 1

Setting Breakpoints

After TotalView is running, start the poe process using the Process > Go command.

A dialog box launches in the UI (the CLI prints a query) to determine if you want to stop the parallel tasks.

If you want to set breakpoints in your code before they begin executing, answer Yes. TotalView initially stops the
parallel tasks, which also allows you to set breakpoints. You can now set breakpoints and control parallel tasks in
the same way as any process controlled by TotalView.

If you have already set and saved breakpoints with the Action Points > Save command and you want to reload
the file, answer No. After TotalView loads these saved breakpoints, the parallel tasks begin executing.

Starting Parallel Tasks

After you set breakpoints, you can start all of the parallel tasks with the Group > Go command.

NOTE: No parallel tasks reach the first line of code in your main routine until all parallel tasks start.

dfocus p dgo

dactions-save filename dactions-load filename

dfocus G dgo Abbreviation: G

MPI Program Setup IBM MPI Parallel Environment (PE) Applications 311

Setting Up Parallel Sessions

Be cautious in placing breakpoints at or before a line that calls MPI_Init() or MPL_Init() because timeouts can
occur while your program is being initialized. After you allow the parallel processes to proceed into the MPI_Init()
or MPL_Init() call, allow all of the parallel processes to proceed through it within a short time.

Attaching to a PE Job

To take full advantage of TotalView’s poe-specific automation, you need to attach to poe itself, and let TotalView
automatically acquire the poe processes on all of its nodes. In this way, TotalView acquires the processes you
want to debug.

Attaching from a Node Running poe

To attach TotalView to poe from the node running poe:

1. Start TotalView in the directory of the debug target.

If you can’t start TotalView in the debug target directory, you can start TotalView by editing the tvdsvr com-
mand line before attaching to poe.

For details, see “Setting the Single-Process Server Launch Command” in the Classic TotalView User Guide’s
chapter “Setting Up Remote Debugging Sessions.”

2. In the File > Attach to a Program, then

find the poe process list, and attach to it by diving into it. When necessary, TotalView launches tvdsvrs.
TotalView also updates the Root Window and opens a Process Window for the poe process.

3. Locate the process you want to debug by selecting it in the Processes and Threads view which should dis-
play it in the Source pane. If your source code files are not displayed, use File > Preferences > Search Path
command to add directories to your search path.

RELATED TOPICS
Saving action points Saving and Loading Action Points on page 133

More information on debugging
with IBM PE

“IBM PE Debugging Tips” in the Classic TotalView User Guide’s chapter
“Debugging Strategies for Parallel Applications.”

dattachpoe pid

MPI Program Setup Open MPI Applications 312

Setting Up Parallel Sessions

Attaching from a Node Not Running poe

The procedure for attaching TotalView to poe from a node that is not running poe is essentially the same as the
procedure for attaching from a node that is running poe. Since you did not run TotalView from the node running
poe (the startup node), you won’t be able to see poe in the Process and Threads view, and you won’t be able to
start it by diving into it.

To place poe in this list:

1. Connect TotalView to the startup node.

For details, see “Setting the Single-Process Server Launch Command” in the Classic TotalView User Guide’s
chapter “Setting Up Remote Debugging Sessions.”

2. Select the File > Attach to a Program.

3. Look for the process named poe and continue as if attaching from a node that is running poe.

Open MPI Applications
Open MPI is an open source implementation of both the MPI-1 and MPI-2 documents that combines some
aspects of four different (and now no longer under active development) MPI implementations: FT-MPI from the
University of Tennessee, LA-MPI from Los Alamos National Laboratory, LAM/MPI from Indiana University, and
PACX-MPI from the University of Stuttgart.

For more information on Open MPI, see https://www.open-mpi.org/.

Debug an Open MPI program similarly to most MPI programs, using the following syntax if TotalView is in your
path:

mpirun -tv args prog prog_args

As an alternative, you can invoke TotalView on mpirun.

totalview -args mpirun args ./prog

For example, to start TotalView on a four-process MPI program:
totalview -args mpirun -np 4 ./mpi_program

Alternatively, use the Session Manager’s Parallel Session dialog (accessed via Process > Modify Arguments) to
enter the parallel session details in the UI.

dattach-r hostname poe poe-pid

https://www.open-mpi.org/

MPI Program Setup QSW RMS Applications 313

Setting Up Parallel Sessions

QSW RMS Applications

Starting TotalView on an RMS Job

To start a parallel job under TotalView control, use TotalView as if you were debugging prun:

{ totalview | totalviewcli } prun -a prun-command-line

TotalView starts and shows you the machine code for RMS prun. Since you’re not usually interested in debugging
this code, use the Process > Go command to let the program run.

The RMS prun command executes and starts all MPI processes. After TotalView acquires them, it asks if you want
to stop them at startup. If you answer yes, TotalView halts them before they enter the main program. You can
then create breakpoints.

Attaching to an RMS Job

To attach to a running RMS job, attach to the RMS prun process that started the job.

You attach to the prun process the same way you attach to other processes.

After you attach to the RMS prun process, you have the option to attach to slave MPICH processes. If you do,
press Return or choose Yes. If you do not, choose No.

If you choose Yes, TotalView starts the server processes and acquires all MPI processes.

Classic UI Only: As an alternative, use the Group > Attach Subset command to predefine what TotalView should
do.

dfocus
pdgo

RELATED TOPICS
Attaching to processes using prun Attach to Process

Using the Group > Attach Subset command to
specify TotalView behavior when attaching to an
RMS prun process

“Group > Attach Subset” in the Classic TotalView User Guide
(In-Product_Help: TotalView Online Help: Process Window:
Group Menu Commands: Group > Attach Subset)

Tips when attaching to processes in a multi-pro-
cess job

“Attaching to Processes Tips” in the “Debugging Strategies for
Parallel Applications” chapter of the Classic TotalView User’s
Guide

MPI Program Setup SGI MPI Applications 314

Setting Up Parallel Sessions

SGI MPI Applications
TotalView can acquire processes started by SGI MPI applications. This MPI is part of the Message Passing Toolkit
(MPT) 1.3 and 1.4 packages.

Classic UI Only: TotalView can display the Message Queue Graph Window in the Classic UI for these releases.
See “Displaying the Message Queue Graph Window” in the chapter “Debugging Strategies for Parallel Applica-
tions” in the Classic TotalView User Guide.

Starting TotalView on an SGI MPI Job

You normally start SGI MPI programs by using the mpirun command. You use a similar command to start an MPI
program under debugger control, as follows:

{ totalview | totalviewcli } mpirun -a mpirun-command-line

This invokes TotalView and tells it to show you the machine code for mpirun. Since you’re not usually interested
in debugging this code, use the Process > Go command to let the program run.

The SGI MPI mpirun command runs and starts all MPI processes. After TotalView acquires them, it asks if you
want to stop them at startup. If you answer Yes, TotalView halts them before they enter the main program. You
can then create breakpoints.

If you set a verbosity level that allows informational messages, TotalView also prints a message that shows the
name of the array and the value of the array services handle (ash) to which it is attaching.

Attaching to an SGI MPI Job

To attach to a running SGI MPI program, attach to the SGI MPI mpirun process that started the program. The pro-
cedure for attaching to an mpirun process is the same as that for attaching to any other process.

After you attach to the mpirun process, TotalView asks if you also want to attach to slave MPICH processes. If you
do, press Return or choose Yes. If you do not, choose No.

If you choose Yes, TotalView starts the server processes and acquires all MPICH processes.

Classic UI Only: As an alternative, use the Group > Attach Subset command to predefine what TotalView should
do.

dfocus p dgo

MPI Program Setup Sun MPI Applications 315

Setting Up Parallel Sessions

Using ReplayEngine with SGI MPI

SGI MPI uses the xpmem module to map memory from one MPI process to another during job startup. Memory
mapping is enabled by default. The size of this mapped memory can be quite large, and can have a negative
effect on TotalView’s ReplayEngine performance. Therefore, mapped memory is limited by default for the xpmem
module if Replay is enabled. The environment variable, MPI_MEMMAP_OFF, is set to 1 in the TotalView file paral-
lel_support.tvd by adding the variable to the replay_env: specification as follows: replay_env:
MPI_MEMMAP_OFF=1

If full memory mapping is required, set the startup environment variable in the Arguments field of the Program
Session dialog. Add the following to the environment variables: MPI_MEMMAP_OFF=0.

Be aware that the default mapped memory size may prove to be too large for ReplayEngine to deal with, and it
could be quite slow. You can limit the size of the mapped heap area by using the MPI_MAPPED_HEAP_SIZE envi-
ronment variable documented in the SGI documentation. After turning off MEMMAP_OFF as described above,
you can set the size (in bytes) in the TotalView startup parameters.

For example:
MPI_MAPPED_HEAP_SIZE=1048576
SGI has a patch for an MPT/XPMEM issue. Without this patch, XPMEM can crash the system if ReplayEngine is
turned on. To get the XPMEM fix for the munmap problem, either upgrade to ProPack 6 SP 4 or install SGI patch
10570 on top of ProPack 6 SP 3.

Sun MPI Applications
TotalView can debug a Sun MPI program and can display Sun MPI message queues. This section describes how to
perform job startup and job attach operations.

To start a Sun MPI application:

Attaching to an mpirun process “Debugging an MPI Program” in the chapter “Starting
TotalView” in the Classic TotalView User Guide.

Using the Group > Attach Subset command to
specify TotalView behavior when attaching to an
RMS prun process

“Group > Attach Subset” in the Classic TotalView User
Guide (In-Product_Help: TotalView Online Help: Process
Window: Group Menu Commands: Group > Attach
Subset)

Using the Group > Attach Subset command to
specify TotalView behavior when attaching to a
process

 “Attaching to Processes Tips” in the Classic TotalView User
Guide’s chapter “Debugging Strategies for Parallel
Applications.”

MPI Program Setup Troubleshooting MPI Startup 316

Setting Up Parallel Sessions

1. Enter the following command:

totalview mprun [totalview_args] -a [mpi_args]

For example:
totalview mprun -g blue -a -np 4 /usr/bin/mpi/conn.x
totalviewcli mprun [totalview_args] -a [mpi_args]

When the TotalView Process Window appears, select the Go button.-

TotalView may display a dialog box with the following text:
Process mprun is a parallel job. Do you want to stop
the job now?

2. If you compiled using the -g option, click Yes to display your source in the Source pane. All processes are
halted.

Attaching to a Sun MPI Job

To attach to an already running mprun job:

1. Find the host name and process identifier (PID) of the mprun job by typing mpps -b. For more information,
see the mpps(1M) manual page.

The following is sample output from this command:
JOBNAME MPRUN_PID MPRUN_HOST
cre.99 12345 hpc-u2-9
cre.100 12601 hpc-u2-8

2. After selecting File > Attach to a Running Program, type mprun in the File Name field and type the PID in
the Process ID field.

3. If TotalView is running on a different node than the mprun job, select the host or add a new host in the
Host field.

Troubleshooting MPI Startup
If you can’t successfully start TotalView on MPI programs, check the following:

 Can you successfully start MPICH programs without TotalView?

The MPICH code contains some useful scripts that verify if you can start remote processes on all of the com-
puters in your computers file. (See tstmachines in mpich/util.)

dfocus p dgo

dattach mprun mprun-pidFor example: dattach mprun 12601

dattach -r host-name mprun mprun-pid

MPI Program Setup Using ReplayEngine with Infiniband MPIs 317

Setting Up Parallel Sessions

 You won’t get a message queue display if you get the following warning:
The symbols and types in the MPICH library used by TotalView to extract the
message queues are not as expected in the image <your image name>. This is
probably an MPICH version or configuration problem.
Check that you are using MPICH Version 1.1.0 or later and that you have configured it with the -debug
option. (You can check this by looking in the config.status file at the root of the MPICH directory tree.)

 Does the TotalView Server (tvdsvr) fail to start?

tvdsvr must be in your PATH when you log in. Remember that TotalView uses ssh to start the server, and
that this command doesn’t pass your current environment to remotely started processes.

 Make sure you have the correct MPI version and have applied all required patches. See the
TotalView Release Notes at https://help.totalview.io/ for up-to-date information.

 Under some circumstances, MPICH kills TotalView with the SIGINT signal. You can see this behavior
when you use the Group > Kill command as the first step in restarting an MPICH job.

If TotalView exits and terminates abnormally with a Killed message, try setting the TV::ignore_control_c
variable to true.

Using ReplayEngine with Infiniband MPIs
In general, using ReplayEngine with MPI versions that communicate over Infiniband is no different than using it
with other MPIs, but its use requires certain environment settings, as described here. If you are launching the MPI
job from within TotalView, these are set for you; if instead, you start the MPI program from outside TotalView, you
must explicitly set your environment.

dfocus g ddelete

The Group > Kill command Individual Execution Commands on page 368 and dkill in the
TotalView Reference Guide.

Tips for debugging MPI applications “MPI Debugging Tips and Tools” in the chapter “Debugging Strate-
gies for Parallel Applications” in the Classic TotalView User Guide.

The TotalView server, tvdsvr "The tvdsvr Command and its Options" in the TotalView Refer-
ence Guide

MPI version information The TotalView Release Notes on the TotalView documentation
page

https://help.totalview.io/
https://help.totalview.io/

MPI Program Setup Using ReplayEngine with Infiniband MPIs 318

Setting Up Parallel Sessions

Required Environment Settings

When you start the MPI program from within TotalView with ReplayEngine enabled, TotalView inserts environment
variable settings into the MPI processes to disable certain RDMA optimizations. (These are optimizations that hin-
der ReplayEngine’s ability to identify the memory regions being actively used for RDMA, and their use can
therefore result in unreasonably slow execution in record mode.) These variables are set for you, requiring no
extra tasks compared to using a non-Infiniband MPI.

The inserted settings are:

 VIADEV_USE_DREG_CACHE=0 (addresses MVAPICH1 versions)

 MV2_DREG_CACHE_LIMIT=1 (addresses MVAPICH2 versions)

 MV2_RNDV_PROTOCOL=R3 (addresses Intel MPI versions, also affects MVAPICH2)

 OMPI_MCA_mpool_rdma_rcache_size_limit=1 (addresses Open MPI versions)

When the MPI program is started outside TotalView (for example, when using a command like mpirun -tv, or
when you attach TotalView to an MPI program that is already running), you must set the relevant environment
variable for your MPI version, as described above. Also, two additional environment variables are required to
make the MPI program's use of RDMA memory visible to ReplayEngine, as follows:

 IBV_FORK_SAFE: Set to any value, for example IBV_FORK_SAFE=1

 LD_PRELOAD: Set to include a preload library, which can be found under the TotalView installation
directory at toolworks/totalview.<version>/linux-x86-64/lib/
undodb_infiniband_preload_x64.so.

For example, here’s how to set the environment for the MVAPICH1 implementation of MPI:

mpirun_rsh -np 8 -hostfile myhosts \
VIADEV_USE_DREG_CACHE=0 IBV_FORK_SAFE=1 \
LD_PRELOAD=/<path>/undodb_infiniband_preload_x64.so myprogram
For more information, consult your MPI version documentation for specifics on setting environment variables.

Cray XT/XE/XK/XC MPIs

On Cray XT/XE/XK/XC (x86_64 only) systems, although Infiniband is not used, the MPIs do use RDMA techniques.
As a result, using Replay on these systems requires some particular environmental settings. Briefly, the required
settings are MPICH_SMP_SINGLE_COPY_OFF = 1, and LD_PRELOAD set to the location of the Infiniband pre-
load library described above. Refer to Cray XT/XE/XK/XC Applications for details.

Possible Errors

ReplayEngine checks environment settings before it attaches to the MPI program, but in some cases, may not
detect incompatible settings, reporting the following errors:

MPI Program Setup MPI Startup Customizations 319

Setting Up Parallel Sessions

 If ReplayEngine finds that either the IBV_FORK_SAFE setting is absent, or that the preload library
has not been loaded, it declines to attach and issues an error message citing unmet prerequisites.
You can still attach TotalView to the program without ReplayEngine - for example, in the GUI by
using the New Program dialog.

 If ReplayEngine cannot determine that the environment variable setting to disable an MPI
optimization has been set, it continues to attach, but issues a warning message that it could not
verify prerequisites. Depending on your program's use of memory for RDMA, you may find that it
runs unreasonably slowly in record mode, or encounters errors that would not occur if
ReplayEngine were not attached.

MPI Startup Customizations
Here you will find information that will allow you to create startup profiles for environments that TotalView
doesn't define. Any customizations made to your MPI environment will be available for later selection in the Ses-
sions Manager where they will appear in the File > Debug a Parallel Program dialog.

In general, TotalView supports various Message Passing Interface (MPI) implementations with no special configu-
ration on your part. However, subtle differences in your environment or an implementation can cause difficulties
that prevent TotalView from automatically starting your program. In these cases, you’ll need to define how
TotalView behaves.

Customizing Your Parallel Configuration

Select a parallel configuration in the File > Debug a Parallel Program dialog box. If the provided default configu-
rations do not meet your needs, you can either overwrite these configurations or create new ones.

The default definitions for parallel configurations reside in the parallel_support.tvd file, located in your
totalview/lib installation directory. Use the variable TV::parallel_configs to customize parallel configurations.

TotalView Customizations

Set the TV::parallel_configs variable, either local to your TotalView installation or globally:

 Globally, in your system's .tvdrc file. If you set this variable here, everyone using this TotalView
version will see the definition.

 Locally, in your .totalview/tvdrc file. You will be the only person to see this definition when you
start TotalView.

Using ReplayEngine in general Using Replay Engine

MPI Program Setup MPI Startup Customizations 320

Setting Up Parallel Sessions

You can also directly edit the parallel_support.tvd file, located in the totalview/lib installation directory area,
but reinstalling TotalView overwrites this file so this is not recommended.

If you are using a locally-installed MPI implementation, add it to your PATH variable. By default, TotalView uses the
information in PATH to find the parallel launcher (for example, mpirun, mpiexec, poe, srun, prun, dmpirun, and
so on). Generally, if you can run your parallel job from a command line, TotalView can also run it.

If you have multiple installed MPI systems — for example, multiple versions of MPICH installed on a common file
server — only one can be in your path. In this case, specify an absolute path to launch it, which means you will
need to customize the TV::parallel_configs list variable or the parallel_support.tvd file contained within your
installation directory so that it does not rely on your PATH variable.

The easiest way to create your own startup configuration for TotalView is to copy a similar configuration from the
TV::private::parallel_configs_base variable (found in the parallel_support.tvd file, located in your installation
directory at totalview/lib) to the TV::parallel_configs variable, and then edit it. Save the TV::parallel_configs
variable in the tvdrc file located in the .totalview subdirectory in your home directory.

When you add configurations, they are simply added to a list. This means that if TotalView supplies a definition
named foo and you create a definition also named foo, both exist and your product chooses the first one in the
list. Because both are displayed, be careful to give each new definition a unique name.

Example Parallel Configuration Definitions

This section provides three examples of customized parallel configurations. See Customizing Your Parallel Con-
figuration on page 319 for information on where to place these definitions.

NOTE: Any customizations made to your MPI environment will be available for later selection in the
Sessions Manager where they will appear in the File > Debug a Parallel Program dialog's Paral-
lel System list.

Here are three examples:
dset TV::parallel_configs {
 #Argonne MPICH
 name: MPICH;
 description: Argonne MPICH;
 starter: mpirun -tv -ksq %s %p %a;
 style: setup_script;
 tasks_option: -np;
 nodes_option: -nodes;
 env_style: force;
 pretest: mpichversion;
 #Argonne MPICH2
 name: MPICH2;
 description: Argonne MPICH2;

MPI Program Setup MPI Startup Customizations 321

Setting Up Parallel Sessions

 starter: $mpiexec -tvsu %s %p %a;
 style: manager_process;
 tasks_option: -n;
 env_option: -env;
 env_style: assign_space_repeat;
 comm_world: 0x44000000;
 pretest: mpich2version
 # AIX POE
 name: poe - AIX;
 description: IBM PE - AIX;
 tasks_option: -procs;
 tasks_env: MP_PROCS;
 nodes_option: -nodes;
 starter: /bin/poe %p %a %s;
 style: bootstrap;
 env: NLSPATH=/usr/lib/nls/msg/%L/%N/: \
 /usr/lib/nls/msg/%L/%N.cat;
 service_tids: 2 3 4;
 comm_world: 0;
 pretest: test -x /bin/poe
 msq_lib: /usr/lpp/ppe.poe/lib/%m
 }

All lines (except for comments) end with a semi-colon (;). Add spaces freely to improve the readability of these
definitions as TotalView ignores them.

Notice that the MPICH2 definition contains the $mpiexec variable. This variable is defined elsewhere in the par-
allel_support.tvd file as follows:
set mpiexec mpiexec;

There is no limit to how many definitions you can place within the parallel_support.tvd file or within a variable.
The definitions you create will appear in the Parallel system pulldown list in the File > Debug a Parallel Pro-
gram dialog box and can be used as an argument to the --mpi option of the CLI's dload command.

The fields that you can set are as follows:

comm_world

Use this option only when style is set to bootstrap. This variable is the definition of MPI_COMM_WORLD in C
and C++. MPI_COMM_WORLD is usually a #define or enum to a special number or a pointer value. If you do
not include this field, TotalView cannot acquire the rank for each MPI process.

description

(optional) A string describing what the configuration is used for. There is no length limit.

env

(optional) Defines environment variables that are placed in the starter program's environment. (Depending on
how the starter works, these variables may not make their way into the actual ranked processes.) If you are de-
fining more than one environment variable, define each in its own env clause.

The format to use is:
variable_name=value

MPI Program Setup MPI Startup Customizations 322

Setting Up Parallel Sessions

env_option

(optional) Names the command-line option that exports environment variables to the tasks started by the
launcher program. Use this option along with the env_style field.

env_style

(optional) Contains a list of environment variables that are passed to tasks.

assign: The argument to be inserted to the command-line option named in env_option is a comma-separated
list of environment variable name=value pairs; that is,

NAME1=VALUE1,NAME2=VALUE2,NAME3=VALUE3
This option is ignored if you do not use an env_option clause.

assign_space_repeat: The argument after env_option is a space-separated name/value pair that is assigned
to an environment variable. The command within env_option is repeated for each environment variable; that
is, suppose you enter:

-env NAME1 VALUE1 -env NAME2 VALUE2
-env NAME3 VALUE3

This mode is primarily used for the mpiexec.py MPICH2 starter program.

excenv

One of the following three strings:

export: The argument to be inserted after the command named in env_option. This is a comma-separated list
of environment variable names; that is,

NAME1,NAME2,NAME3

This option is ignored if you do not use the env_option clause.

force: Environment variables are forced into the ranked processes using a shell script. TotalView or Memory-
Scape will generate a script that launches the target program. The script also tells the starter to run that script.
This clause requires that your home directory be visible on all remote nodes. In most cases, you will use this op-
tion when you need to dynamically link memory debugging into the target. While this option does not work with
all MPI implementations, it is the most reliable method for MPICH1.

none: No argument is inserted after env_option.

msq_lib

(optional) Names the dynamically loaded library that TotalView uses when it needs to locate message queue in-
formation. You can name this file using either a relative or full pathname.

name

A short name describing the configuration. This name shows up in such places as the File > Debug a Parallel
Program dialog box and in the Process > Modify Arguments dialog box. TotalView remembers which config-
uration you use when starting a program so that it can automatically reapply the configuration when you restart
the program.

MPI Program Setup MPI Startup Customizations 323

Setting Up Parallel Sessions

Because the configuration is associated with a program's name, renaming or moving the program destroys this
association.

nodes_option

Names the command-line option (usually -nodes) that sets the number of node upon which your program
runs. This statement does not define the value that is the argument to this command-line option.

Only omit this statement if your system doesn't allow you to control the number of nodes from the command
line. If you set this value to zero (“0”), this statement is omitted.

pretest

(optional) Names a shell command that is run before the parallel job is launched. This command must run
quickly, produce a timely response, and have no side-effects. This is a test, not a setup hook.

TotalView may kill the test if it takes too long. It may call it more than once to be sure if everything is OK. If the
shell command exit is not as expected, TotalView asks for permission before continuing,

pretext_exit

The expected error code of the pretest command. The default is zero.

service_tids

(optional) The list of thread IDs that TotalView marks as service threads.

A service thread differs from a system manager thread in that it is created by the parallel runtime and are not
created by your program. POE for example, often creates three service threads.

starter

Defines a template that TotalView uses to create the command line that starts your program. In most cases, this
template describes the relative position of the arguments. However, you can also use it to add extra parameters,
commands, or environment variables. Here are the three substation parameters:

%a: Replaced with the command-line arguments passed to rank processes.

%p: Replaced with the absolute pathname of the target program.

%s: Replaced with additional startup arguments. These are parameters to the starter process, not the rank pro-
cesses.

For example:
starter: mpirun -tv -all-local %s %p %a;

When the user selects a value for the option indicated by the nodes_option and tasks_options, the argument
and the value are placed within the %s parameter. If you enter a value of 0 for either of these, TotalView omits
the parameter.

style

MPI programs are launched in two ways: either by a manager process or by a script. Use this option to name the
method, as follows:

MPI Program Setup MPI Startup Customizations 324

Setting Up Parallel Sessions

manager_process: The parallel system uses a binary manager process to oversee process creation and pro-
cess lifetime. Our products attach to this process and communicate with it using its debug interface. For exam-
ple, IBM's poe uses this style.

style: manager_process;
setup_script: The parallel system uses a script—which is often mpirun—to set up the arguments, environ-
ment, and temporary files. However, the script does not run as part of the parallel job. This script must under-
stand the -tv command-line option and the TOTALVIEW environment variable.

bootstrap: The parallel system attempts to launch an uninstrumented MPI by interposing TotalView inside the
parallel launch sequence in place of the target program. This does not work for MPICH and SGI MPT.

tasks_env

The name of an environment variable whose value is the expected number of parallel tasks. This is consulted
when the user does not explicitly specify a task count.

tasks_option

(sometimes required) Lets you define the option (usually -np or -procs) that controls the total number of tasks
or processes.

Only omit this statement if your system doesn't allow you to control the number of tasks from the command
line. If you set this to 0, this statement is omitted.

325

Debugging OpenMP Applications

 OpenMP and the OMPD API on page 326

 Running Your Program on page 329

 Hybrid Programming: Combining OpenMP with MPI on page 336

OpenMP and the OMPD API OMPD Requirements 326

Debugging OpenMP Applications

OpenMP and the OMPD API
The OpenMP (Open Multi-Processing) standard provides a parallel programming API for defining multi-threaded,
shared-memory programs. OpenMP consists of a series of compiler directives, library routines, and environment
variables that configure runtime behavior.

For more detail on OpenMP itself, see the OpenMP specification.

The OpenMP Debugging API (OMPD v5.0) is an innovative new interface that allows third-party tools, such as
debuggers, to extract the execution state of an OpenMP (OMP) runtime library, including live processes and core
files. OMPD was added to the OpenMP 5.0 specification, dated November 2018.

OMPD allows the TotalView debugger, or other similar third-party tools, to extract information about OpenMP
objects such as threads, parallel and task regions, internal control variables, parent/child thread relationships,
and runtime call-stack boundaries.

TotalView provides an OpenMP view in the UI that displays OpenMP control variables, threads, and parallel and
task regions. The Call Stack view can be filtered to hide internal OpenMP runtime frames and make it easier to
peruse the stack and relevant #pragma directive frames. It also displays information on implicit and explicit task
regions.

OMPD Requirements
For the latest OMPD compiler support, see the Platforms Guide.

https://www.openmp.org/specifications/
https://www.openmp.org/spec-html/5.0/openmpch5.html#x241-16530005
https://www.openmp.org/spec-html/5.0/openmp.html

OpenMP Setup and Configuration Enabling OpenMP Debugging 327

Debugging OpenMP Applications

OpenMP Setup and Configuration

To use OMPD in TotalView, enable OpenMP debugging and, optionally, enable stack filtering.

Enabling OpenMP Debugging
Enable OpenMP debugging and stack filtering using the UI’s menu option Debug > Enable OpenMP Debugging.

You can also set this in the shell before launching TotalView:

 Set the environment variable OMP_DEBUG:

setenv OMP_DEBUG enabled
 or, launch TotalView while setting it:

totalview -env OMP_DEBUG=enabled <your_program>

 Use the boolean state variable TV::openmp_debug_enabled:

dset TV::openmp_debug_enabled true

Enabling Stack Filtering
Filtering the stack backtrace helps you focus on relevant calls rather than stack frames specific to the OpenMP
runtime library, which can clutter the Call Stack view. Figure 112 displays an unfiltered call stack on the left, com-
pared to a filtered stack on the right.

OpenMP Setup and Configuration Enabling Stack Filtering 328

Debugging OpenMP Applications

Figure 112, Call Stack Filtering

Disable or re-enable stack trace filtering using one of the following methods:

Controlling all stack trace transformations:

 Click the transform button () in the Call Stack view to toggle the transform on or off,

or

 Enter the following command in the Command Line view:
dstacktransform | disable | enable
or

 Use a state variable to control the filtering of the stack:

dset TV::stack_trace_transform_enabled true (defaults to false)

This variable controls whether any stack filtering occurs for any program.

Controlling OpenMP-specific stack filtering:

Use the OMPD-specific variable, TV::openmp_ompd_filter_stack:

dset TV::openmp_ompd_filter_stack [true,false,auto]

The default is auto, which sets the variable to the same value as TV::stack_trace_transform_enabled.

Running Your Program The Call Stack 329

Debugging OpenMP Applications

Running Your Program
After you load your OpenMP program, set some breakpoints, and start your program, you can examine the
OpenMP view and the Call Stack view to analyze the backtrace and see the state of your threads.

Setting Breakpoints in an OpenMP Program

When setting breakpoints in an OpenMP program, you may want all OpenMP threads to run to a particular line, in
which case, set the breakpoints to stop at the thread level rather than the default process level, using the context
menu in the Action Points view:

The Call Stack
For OpenMP, the Call Stack identifies parallel and task regions using the annotations "#pragma omp parallel” or
"#pragma omp task", depending on whether the frame is associated with an implicit (parallel) or explicit (task)
task.

Running Your Program The Call Stack 330

Debugging OpenMP Applications

For example, consider an OpenMP program with a single parallel region and multiple threads. When a breakpoint
is hit and you focus on a thread in the Processes & Threads view, that thread’s backtrace displays in the Call Stack,
as usual:

Observe the following:

 The Call Stack is filtered, identified by the orange filter icon ().

 The parallel regions are identified with #pragma, and the displayed value reflects the source code
itself. (This is in contrast to some compiler’s practice of assigning outlined functions meaningless
names). For example, note that omp_task_entry is identified as a #pragma omp task to make it
clear that this is an explicit task.

NOTE: The pragma annotations are language-sensitive and show "#pragma" for C/C++
OMP code and "!$omp" for Fortran code.

 Selecting the #pragma entry in the Call Stack automatically navigates to the location in the source
code where #pragma was declared:

Running Your Program The OpenMP View 331

Debugging OpenMP Applications

 The stack backlink to the parent thread is identified by a link icon (). In this example, the thread
that has focus, or 1.7, was invoked by a parallel region in thread 1.3 in function h, identified by the
popup tip when you hover a cursor over its entry in the Call Stack:

Clicking this link focuses the source pane on its parent thread’s stack frame for function h, which in turn
updates the Call Stack for the backtrace for thread 1.3:

This parent/child stack linking continues through the backtrace until the initial thread 1.1, is reached.

The OpenMP View
The OpenMP view displays all the OMPD information provided by the OpenMP Debugging Interface, also available
via the domp CLI command.

 OMPD Info Tab

Running Your Program The OpenMP View 332

Debugging OpenMP Applications

Information about the OMPD dynamic library (DLL) in use for the selected process.

CLI command: domp -ompd
 API Version: The version of the OMPD API supported by the DLL, which is returned by omp-

d_get_api_version(). For OMPD v5.0, that value is 201811.

 DLL Version: The string returned by ompd_get_version_string().

 DLL Name: The location of the OMPD DLL loaded by TotalView to handle that process. A spe-
cific DLL is loaded once into TotalView and then used for as many processes that specify it via
the ompd_dll_locations variable in the process.

 Control Variables Tab

The OMPD display control variable settings for a selected process. Changing the focus to a different process
repopulates this list with that process’s control variables.

CLI command: domp -control_vars

Running Your Program The OpenMP View 333

Debugging OpenMP Applications

 Regions Tab

The nest of parallel regions for the entire share group. Selecting different regions in the display focuses the
source pane on the specific region.

CLI Command: domp -threads -regions
 Threads Tab

Displays details on all the OpenMP threads in the application.

Note that:

 A thread’s first line identifies its current (innermost) region, displaying the basic OpenMP
thread information.

Expand any top level thread to display the thread’s nest of parallel and task regions.

Running Your Program The OpenMP View 334

Debugging OpenMP Applications

 Once expanded, each line shows the enclosing regions’ task flags and distance from the cur-
rent region, identified as an integer in the State/Region# column; the last line identifies the
outermost region. The regions may cross thread boundaries from a child thread to its parent
thread.

 Right-clicking on the header shows or hides columns.

This setting is persisted between sessions.

CLI Command: domp -threads. This command has numerous options that are all included as columns
within this Threads tab.

Table 7: OpenMP Threads Tab Column Description

Column Description

Thread ID The TotalView thread id or the MPI Rank if this is an MPI program

OMP Thread # The thread’s OpenMP thread number within its team

System ID The thread’s Kernel ID or user thread id

State/Region # The threads OpenMP state for the top-level thread. This state is defined by the OpenMP
standard. If the expander on the top-level thread is clicked, the thread’s nest of parallel or
task regions is displayed, and the column shows the index of the region.

Flags OpenMP Flags. The following flags are reported:

 i: The task is an implicit task. No corresponding routine in the OpenMP
runtime reports this information.

 p: The thread is in an active parallel region. This corresponds to the
omp_in_parallel() predicate in the OpenMP runtime.

 f : The task is a final task. This corresponds to the omp_in_final() in
the OpenMP runtime.

When true, the flag is displayed by just its letter. If false, a hyphen (“-”) displays after it. If the
flag could not be fetched, a “?” is displayed.

Running Your Program The OpenMP View 335

Debugging OpenMP Applications

Parallel
Function

The subroutine name for the task function for the current parallel region’s implicit task.
Hovering over the function name displays the full file path for the function, along with the
line number in the source file.

Task Function The subroutine name for the task function for the current implicit or explicit task region.
Hovering over the function name displays the full file path for the function, along with the
line number in the source file.

Exit Addr The thread’s stack address corresponding to the location where control exited the OpenMP
runtime to execute the task user code. The exit address is 0 for the root region.

Reentry Addr The thread’s stack address corresponding to the location where control reentered the run-
time from the user task code. The reentry address is 0 for a leaf.

Table 7: OpenMP Threads Tab Column Description

Column Description

Hybrid Programming: Combining OpenMP with MPI The OpenMP View 336

Debugging OpenMP Applications

Hybrid Programming: Combining OpenMP
with MPI
OpenMP shares memory between threads on a single node, while MPI can launch separate tasks and communi-
cate between them across multiple nodes, but does not share memory between nodes. You can combine the use
of these two technologies in a hybrid programming model to gain both shared memory and the ability to distrib-
ute tasks across multiple cores. In this case, each process is an MPI process, while the threads within those
processes may be parallelized using OpenMP.

Consider this example. Figure 113 compares the Threads tab in an OpenMP program (left) with one in a hybrid
program (right).

Figure 113, Hybrid programming example, Threads tab

The Members tab in the pure OpenMP program displays a single process, identified by the “p1.x” process ID,
along with multiple threads. The same tab in the hybrid program displays the MPI rank rather than the process ID,
followed by the thread ID.

Hybrid Programming: Combining OpenMP with MPI The OpenMP View 337

Debugging OpenMP Applications

The Regions tab of the OpenMP view also reflects the MPI rank under the Members column, shown in Figure
114.

Figure 114, Hybrid programming example, OpenMP view’s Regions tab

In this example, the hybrid MPI/OpenMP program (top right) has 4 MPI ranks with 16 threads.

338

Controlling fork, vfork, and execve
Handling

 The exec_handling and fork_handling Command Options and State Variables on page 339

 Exec Handling on page 340

 Fork Handling on page 340

 Example on page 340

The exec_handling and fork_handling Command Options and State Variables 339

Controlling fork, vfork, and execve Handling

The exec_handling and fork_handling
Command Options and State Variables
TotalView allows you to control how the debugger handles system calls to execve(), fork(), vfork(), and clone()
(when used without the CLONE_VM flag).

 When calling fork(), vfork(), and clone(), choose to either attach or detach from the new child
process.

 When calling execve(), choose either to continue the new process, halt it, or ask what action to
take.

This behavior is controlled by two CLI state variables and two command options. Set the state variables to control
the default behavior for TotalView. Use the command options when starting TotalView to control the behavior for
a particular debugging session. The command options override the state variable settings.

The lists exec-handling-list and fork-handling-list are Tcl lists of regexp and action pairs. Each regexp is
matched against the process's name to find a matching action, which determines how to handle the exec or fork
event.

Table 8: exec_handling and fork_handling Command Options and State Variables

Command Options CLI State Variables

-exec_handling exec-handling-list TV::exec_handling exec-handling-list

-fork_handling fork-handling-list TV::fork_handling fork-handling-list

RELATED TOPICS
The state variables TV::exec_handling exec-handling-list and TV::fork_han-

dling fork-handling-list

totalview command options -exec_handling exec-handling-list and -fork_handling
fork-handling-list

Setting breakpoints when using fork() and
execve()

Setting Breakpoints When Using the fork()/execve() Func-
tions on page 94

Linking with the dbfork library Linking with the dbfork Library on page 573

The exec_handling and fork_handling Command Options and State Variables Exec Handling 340

Controlling fork, vfork, and execve Handling

Exec Handling
When a process being debugged execs a new executable, the debugger iterates over exec-handling-list to
match the original process name (that is, the name of the process before it called exec) against each regexp in
the list. When it finds a match, it uses the corresponding action, as follows:

If a matching process name is not found in the exec-handling-list, the value of the TV::parallel_stop CLI state
variable preference is used.

Fork Handling
When first launching or attaching to a process, the debugger iterates over fork-handling-list to match the pro-
cess name against each regexp in the list. When it finds a match, it uses the corresponding action to determine
how future fork system calls will be handled, as follows:

If a matching process name is not found in the fork-handling-list list, TotalView handles fork() based on whether
the process was linked with the dbfork library and the setting of the TV::dbfork CLI state variable preference.

Example
It’s important to properly construct the exec-handling-list and fork-handling-list list of pairs, so that the list is
properly quoted for Tcl or the shell. Generally, enclose the list in curly braces in the CLI, and enclose it in single
quotes in the shell.

Note that the regular expressions are not anchored, so you must use "^" and "$" to match the beginning or end
of the process name.

Action Description

halt Stop the process

go Continue the process

ask Ask whether to stop the process

Action Description

attach Attach to the new child processes.

detach Detach from the new child processes.

The exec_handling and fork_handling Command Options and State Variables Example 341

Controlling fork, vfork, and execve Handling

Calling exec:

This example configures TotalView to automatically continue the process (without asking) when bash calls exec,
but to ask when other processes call exec, using the following dset CLI command or totalview command
option:

dset TV::exec_handling {{{^bash$} go} {. ask}}
totalview -exec_handling '{{^bash$} go} {. ask}'
Above, the regexp is wrapped in an extra set of curly braces to make sure that Tcl does not process the "$" as a
variable reference.

Calling fork:

This example configures TotalView to attach to the child process when a process containing the name "tx_-
fork_exec" calls fork, but to detach from other forked processes, using the following dset CLI command or
totalview command option:

dset TV::fork_handling {{tx_fork_exec attach} {. detach}}
totalview -fork_handling '{tx_fork_exec attach} {. detach}'
An example session:

% totalviewcli -verbosity errors \
 -exec_handling '{{^bash$} go} {. ask}' \
 -fork_handling '{tx_fork_exec attach} {. detach}' \
 -args \
 bash -c 'tx_fork_exec tx_hello'
d1.<> co
Parent done
Child is calling execve ...
Process bash<tx_fork_exec>.1 has exec'd /path/to/tx_hello.
 Do you want to stop it now?

: yes
d1.<> ST
1 (0) Nonexistent [bash]
2 (20053) Stopped [bash<tx_fork_exec><tx_hello>.1]
 2.1 (20053/20053) Stopped PC=0x7f70517dd210
d1.<>

342

Group, Process, and Thread
Control

Overview
When debugging a parallel program, you often need fine-grained control over the program’s execution.
TotalView organizes a program’s processes and threads into groups, a design that provides you the ability to
precisely select a focus for any execution control operation.

The focus of any debugging command determines the set of processes and threads that will be affected by
that command, whether that's a single thread, a single process, a group of processes or threads, or multiple
groups—and anything in between.

Select the focus either in the UI using its Focus control, or in the CLI using the dfocus command. Debugger
commands determine the arena (the specific collection of thread(s) or process(es) within the target) by look-
ing at the selected focus.

The arena includes a thread of interest, a process of interest, and a group of interest. It also includes a width,
which provides a way to specify the set of processes and threads on which certain debugger commands will
act. For example, the width determines whether a command operates on a single thread, a process, or an
entire group. It may also include a group specifier to identify which group the command should act on.

Thread, Process, and Group of Interest

 TOI—The Thread of Interest is selected by the user. In the UI, the TOI is typically identified by
selecting a particular thread within the Processes and Threads view. In the CLI, the TOI is the
primary thread that will be affected by a command. For example, the Step command always
steps the thread of interest, but it may optionally run other threads in the process and other
processes in the group.

 POI—The Process of Interest is the process that contains the TOI

 GOI—The Group of Interest is specified by the arena and the POI/TOI

An understanding of groups, arenas, P/T sets, and width will help you to set a precise focus to effectively
debug complex, parallel programs with any number of threads and processes.

Overview 343

Group, Process, and Thread Control

This chapter discusses:

 Groups in TotalView on page 344

 Arenas and P/T Sets on page 352

 Stepping and Program Execution on page 367

Groups in TotalView What Is a Group? 344

Group, Process, and Thread Control

Groups in TotalView
TotalView organizes all processes and threads into groups, which provides a mechanism by which you can pre-
cisely select the processes and threads on which a command will operate. Some groups contain (possibly multi-
threaded) processes, while others contain just threads. The creation of these process or thread groups is largely
automatic and occurs in the debugger without explicit input from the user. TotalView uses these groups for any
operations that involve multiple threads or processes.

These automatically created groups offer a set of useful collections of threads and processes that can be
selected as the group of interest (GOI) for certain debugger commands. You can select these either in the UI via
the Focus menu, or, for finer control, in the CLI by providing a P/T set parameter to the dfocus or other com-
mands. (More on P/T sets later, but a P/T set is simply a list of arenas.)

The GOI is the group that was specified in the focus and will therefore determine the set of processes and
threads affected by the command. Most commands define a default group that makes sense for the command.
For example, execution commands (Go, Stop, Step, etc.) default to the Control Group, and data-oriented or
breakpoint commands default to the Share Group.

What Is a Group?
Groups are fundamental to multiprocess and multithread control in TotalView. Each process or thread group is
defined by a unique numeric ID. A group is either a process group containing only processes, or a thread group
containing only threads.

TotalView automatically defines several groups that are used in common operations, including: the control group
(all processes in a program, which are normally controlled together); the share group (all processes in the program
that share a single image); the workers group (all worker threads in a control group); the lockstep group (all threads
that share the same PC in a share group); and the all group (all processes in the debug session).

Internally, a group is just a table of processes or threads. Groups that TotalView defines are automatically
updated as new threads and processes are created or old threads and processes exit. The contents of these
groups therefore vary during program execution. Users may also define custom groups. These have identical
properties as the fundamental groups of TotalView, but are not automatically maintained by the debugger.

A group contains no information regarding the thread or process of interest, nor does it identify the level at which
a command should operate (i.e., should it operate on only the thread, the entire process, or the group of pro-
cesses?). Use an arena to specify the target, or focus, of a command. An arena in TotalView is a group plus a
specific process and thread, along with an optional width indicator to define the subset that should be affected by
a command. A P/T set is composed of a list of arena specifiers. For more information, see Arenas and P/T Sets.

Groups in TotalView Types of Groups Created by TotalView 345

Group, Process, and Thread Control

Types of Groups Created by TotalView
TotalView automatically organizes your processes and threads into the following predefined groups:

 Process Groups:

By default, a process group contains all threads in all processes that are members of the group.

 Control Group: All processes in a program. These processes can be local or remote. If your
program uses processes that it did not create, TotalView places them in separate control
groups by default. For example, a client/server program with two distinct executables that
run independently will be placed into separate control groups. In contrast, processes created
by fork()/exec() are in the same control group.

You don’t have to accept these defaults. You can specify an existing control group for newly attached
or created processes, and move existing processes to a different control group.

 Share Group: All processes in a control group that share the same image, i.e., the same exe-
cutable filename and path. In most cases, parallel programs have more than one share
group. Share groups, like control groups, can be local or remote.

 All Group: All processes in a debugging session.

 Thread Groups:

A thread group can contain a subset of the threads from any process.

 Workers Group: All worker threads in a control group. These threads can reside in more than
one share group. TotalView automatically places all threads that are not manager threads
into the workers group. Manager threads, i.e., those created by the pthreads package to
manage other threads, do not execute code and cannot normally be controlled individually.
(Note that most modern systems do not use manager threads.)

 Lockstep Group: All threads in the share group that are at the same PC (program counter) as
the thread of interest (TOI). This group is a subset of a workers group and will typically
include threads from multiple processes.

How TotalView Creates Groups
TotalView places processes and threads into groups as your program creates them, except for the lockstep
groups, which are created or changed whenever a process or thread hits an action point or is stopped for any
reason. Here is a rundown on how these groups are created.

Groups in TotalView How TotalView Creates Groups 346

Group, Process, and Thread Control

As soon as a program starts, TotalView creates the two process groups: a control group and a share group. It also
creates a workers group, containing the thread in the main() routine. There is no lockstep group yet, since lock-
step groups contain only stopped threads. As new threads are spawned and begin to run, they also are added to
these three groups.

Let’s consider a few scenarios common to parallel program debugging.

Groups Created When a Program Calls fork()/exec()

TotalView can automatically attach to child processes created when a process being debugged calls fork() or
vfork(). Here’s a typical flow:

1. TotalView is started on a program named "a.out". TotalView names the process "a.out" and automatically
places it in Control Group 1 and Share Group 2.

2. During execution, process "a.out" makes a fork() system call to create a child process. If TotalView is config-
ured to automatically attach to child processes, it names the process "a.out.1". The child process remains in
Control Group 1 because of the parent/child relationship, and it also remains in Share Group 2 because it is
executing the program named "a.out".

3. During execution, process "a.out.1" (the child process) makes an execve() system call on a program named
"b.out". TotalView renames the child process to "a.out<b.out>.1". The child process remains in Control
Group 1, but is placed in Share Group 3 because it is now executing a program named "b.out".

4. All the threads in processes "a.out" and "a.out<b.out>.1" are placed in Worker Group 4, because neither
program creates manager threads, and both processes are members of the same Control Group.

Groups Created for MPI Programs

TotalView can automatically attach to MPI processes created by an MPIR starter program (such as, mpirun), for
example, when you launch the MPI starter process under TotalView. Here's a typical flow:

RELATED TOPICS
Setting breakpoints when acquiring processes using
fork or exec

Setting Breakpoints When Using the fork()/execve()
Functions on page 94

Use TotalView TV::exec_handling and -exec_han-
dling options to control whether new processes are
stopped or allowed to continue running

Exec Handling on page 340

Choose to either attach or detach from the new child
process.

Fork Handling on page 340

Groups in TotalView How TotalView Creates Groups 347

Group, Process, and Thread Control

1. TotalView is started on the MPI starter program named "mpirun". TotalView names the process "mpirun"
and automatically places it in Control Group 1 and Share Group 2.

2. During execution, the "mpirun" process launches the MPI processes, and waits for the debugger to attach
to the MPI processes before allowing them to execute the application code. The MPI application is an
MPMD-style application, where some of the MPI processes run the executable "a.out", and others run the
executable "b.out".

3. When TotalView detects that the "mpirun" process has launched the MPI processes, it automatically
attaches to them. The MPI processes are placed in Control Group 1 with the MPI starter process because
effectively the MPI starter process is the parent of the MPI processes. The MPI starter process remains in
Share Group 2, but two new share groups are created for the MPI processes: Share Group 3 for the MPI
processes executing "a.out" and Share Group 4 for the MPI processes executing "b.out".

4. All the threads in the MPI starter process and MPI processes are placed in Worker Group 5, because none
of the processes create manager threads and all processes are members of the same Control Group.

NOTE: Note that if you have multiple share groups in your debugging session, you can set the focus
to “Share group” in the Focus menu, and only the share group that contains the TOI will run,
while the others will remain steady. See Executing a Single Share Group on page 348 for an
example.

Groups Created for CUDA Programs

The take home point for group creation when debugging CUDA programs is that CUDA threads are placed in the
same share group as are their host Linux processes. Because CUDA threads and the host process are all in the
same share group, you can create pending or sliding breakpoints on source lines and functions in the GPU code
before the code is loaded onto the GPU. This organization allows support for a unified Source view display, where
the breakpoint and source line information of the code running on the GPU is unified with the code running on
the host CPU.

RELATED TOPICS
How groups are created when debugging CUDA
programs

The TotalView CUDA Debugging Model

More on the unified Source view display Unified Source View and Breakpoint Display and Uni-
fied Source View Display on page 8

Groups in TotalView Executing a Single Share Group 348

Group, Process, and Thread Control

Executing a Single Share Group
Some MPI implementations support a multiple programs/multiple data mode (MPMD). With this mode, you can
launch separate executables with different MPI arguments, and TotalView will place each executable's jobs in
their own share group.

In this mode, you can then use the Focus menu to isolate a single share group for execution so that all other
share groups remain steady. The default behavior is to allow all processes in all share groups (the control group)
to run.

NOTE: To view the separate share groups in the Processes & Threads view, be sure that Share Group
is selected from the view’s Configure panel.

Consider this session with two share groups S4 and S5.

Figure 115, Two share groups in a session

Groups in TotalView Executing a Single Share Group 349

Group, Process, and Thread Control

Note that some processes in the S4 share group are stopped at line 96. Share group S5 is stopped at breakpoint
on line 23 and contains the thread of interest (TOI), 2.1.

Choosing Group (Share) from the Focus menu will advance just the S5 share group because it contains the
thread of interest (TOI), 4.1 (which has a rank of 2.1).

With the focus on the share group, select Go from the toolbar (), then note that share group S4 did not
advance, but share group S5 advanced to line 25.

NOTE: To ensure that advancing your program considers the focus selected under the Focus menu,
use the Go command in the toolbar as this example shows. The Go commands available
under the menu items Group, Process, or Thread operate only on the entire control group and
are unrelated to the Focus menu.

Figure 116, Share group breakpoint hopping

Groups in TotalView Executing a Single Share Group 350

Group, Process, and Thread Control

NOTE: Because the executables in different share groups often need to interact with each other, be
aware that holding processes in another share group can result in a deadlock situation; before
taking advantage of this capability, be sure that the share groups are independently executing
to avoid deadlock.

Single Stepping While Focused on a Share Group

When the focus is on a share group and you choose Go from the toolbar, all the processes in that share group
are allowed to run, while those in any other share groups hold steady.

Stepping operations behave differently, however. If you want to single step a particular share group through an
application, you may need to hold the processes in other share groups or they will be allowed to run freely while
you try to move your TOI to a goal.

Holding a Process

To hold a process, focus on the process in the Processes & Threads view, and select Process > Hold from the
menu. If you have multiple processes, rather than selecting each one individually and using the Process > Hold
menu item, you can use the CLI to select all of them at once.

For example, this command holds all the processes in the share group containing process 2:

f gS2 dhold -process

As a shortcut, you could use:

f gS2 HP

Viewing Held Processes

To verify that the processes are held, turn on the Process Held option in the Configure panel of the Processes &
Threads view:

Groups in TotalView Executing a Single Share Group 351

Group, Process, and Thread Control

Figure 117, Process Held option in the Processes & Threads View

The view then identifies held or unheld processes:

You can also view the status in the CLI. This command displays the status of all groups:

f g st

The CLI displays an H for held processes:

Arenas and P/T Sets Arena Specifiers in a P/T Set 352

Group, Process, and Thread Control

Arenas and P/T Sets
Many debugger commands operate on a thread, process, or group based on the defined arena, i.e., the target, or
focus, provided to a command. An arena in TotalView is comprised of a group, a specific process and thread, and
a width indicator to define the subset that should be affected by a command.

Arenas are contained within P/T sets, which are lists that can contain any number of arenas.

Arena Specifiers in a P/T Set
A P/T set in the CLI is a Tcl list, usually enclosed in curly braces ({ }), and composed of a list of arena specifiers, or
a P/T expression composed of arena specifiers and operators. An arena defines a collection of processes and
threads that are the target of an action. Many CLI commands can act on one or more arenas. For example, the
following dfocus command uses two arena specifiers to set the focus on two arenas: process 1 and process 2:
dfocus {p1 p2}

TotalView identifies one thread in the arena as the thread of interest (TOI). However, the collection defined by the
arena actually includes all the processes and threads in the group associated with the arena, i.e., the group of
interest (GOI).

An arena specifier includes a width and a TOI. (Widths are discussed in detail in Process and Thread Width Spec-
ifiers in a P/T Set.) It may also include a group. In an arena, the TOI specifies a target thread, while the width
identifies a subset of the collection of processes and threads to be affected by the command.

For a P/T set that contains multiple arenas, most commands iterate over each arena and act specifically on each.
Some CLI output commands, however, combine arenas and act on them as a single target.

P/T Set and Arena Identifier Syntax

Create a P/T set in the CLI by either:

 Entering arena identifiers within braces ({ }) to create a Tcl list.

 Using Tcl commands that create and manipulate the list of arena identifiers.

P/T sets are then used as arguments to a command. If you’re entering one element, you usually do not have to
use the Tcl list syntax.

For example, the following list contains arena specifiers for process 2, thread 1, and process 3, thread 2:
{p2.1 p3.2}

Arenas and P/T Sets Process and Thread Width Specifiers in a P/T Set 353

Group, Process, and Thread Control

If you do not explicitly specify a P/T set in the CLI, TotalView defines a target set for you. In the UI, the default is the
process and thread in the Processes & Threads view. In the CLI, this default is indicated by the focus, which is
shown in the default CLI prompt. (See About the CLI Prompt.)

To save a P/T set definition for later use, assign the specifiers to a Tcl variable, for example:
set myset {g2.3 t3.1}
dfocus $myset dgo

The dfocus command returns the default focus, so you can save this value for later use, for example:
set save_set [dfocus]

Defining the Thread of Interest (TOI) in an Arena Specifier

The TOI is specified as p.t, where p is the TotalView process ID (DPID) and t is the TotalView thread ID (DTID). The
p.t combination identifies the process of interest (POI) and thread of interest (TOI). The TOI is the primary thread
acted on by a TotalView command. For example, while the dstep command always steps the TOI, it may also run
the rest of the threads in the POI and step other processes in the group.

In addition to using numerical values, you can also use two special symbols:

 The less-than character (<) indicates the lowest numbered worker thread in a process, and is used
instead of the DTID value. If, however, the arena explicitly names a thread group, the < symbol
means the lowest numbered member of the thread group. This symbol lets TotalView select the
first user thread, which is not necessarily thread 1.

 A dot (.) indicates the current set. Although you seldom use this symbol interactively, it can be
useful in scripts.

Process and Thread Width Specifiers in a P/T Set
You can define a P/T set in two ways. If you’re not manipulating groups, the format is as follows:

[width_specifier][dpid][.dtid]

Group Specifiers in P/T Sets extends this format to include groups. When using P/T sets, you can create sets with
just width indicators or just group indicators, or both.

For example, p2.3 indicates process 2, thread 3.

You can leave out parts of the P/T set if your entry is unambiguous. A missing width or DPID is filled in from the
current focus. A missing DTID is always assumed to be <. For more information, see Naming Incomplete Arenas.

Arenas and P/T Sets Process and Thread Width Specifiers in a P/T Set 354

Group, Process, and Thread Control

The width_specifier is a lowercase letter that indicates which processes and threads are part of the arena and
therefore the target of a command.

A useful way to think of the width is that it is a restriction on the rest of the arena specifier. The collection of
threads on which to operate is the arena restricted by the width. A width of a includes everything. A width of g
restricts it to just the group in the arena. A width of p restricts it further, to just the threads which are also mem-
bers of the process and group in the arena. Finally, a width of t restricts the collection to just the TOI.

For example, consider how width impacts the dstep command. This command always requires a TOI, but the
processes or threads on which this command acts differ:

 Step just the TOI during the step operation (thread-level single-step).

 Step the TOI and step all threads in the process that contain the TOI (process-level single-step).

 Step all processes in the group that have threads at the same PC as the TOI (group-level single-
step).

For more information, see Stepping and Program Execution.

Table 9: Arena width specifiers

Width specifier Target of command

t Thread width
Only the thread of interest (TOI).

p Process width

All threads in the group of interest (GOI) that are in the process of
interest (POI). This may be a subset of the threads in the POI.

g Group width
All threads in the GOI, typically spanning multiple processes.

a All processes and threads
All threads known to TotalView.

d Default width
Depends on the default for each command. This is also the width
to which the default focus is set. For example, the dstep com-
mand defaults to process width (run the process while stepping
one thread), and the dwhere command defaults to thread width.

Arenas and P/T Sets Group Specifiers in P/T Sets 355

Group, Process, and Thread Control

Group Specifiers in P/T Sets
This section extends the arena specifier syntax to include groups, building on the discussion in Process and
Thread Width Specifiers in a P/T Set.

If you do not include a group specifier, the default is the control group that contains the POI. The CLI displays a
target group in the focus string only if you set it to something other than the default group.

You most often use target group specifiers with the stepping commands, as they give these commands more
control over what to step.

Add groups to an arena specifier using this format:

[width_specifier][group_specifier][dpid][.dtid]

If you enter only one element, TotalView determines other values based on the current focus. Identify a group
using a letter, number, or name.

Identifying a Group Using a Letter

Use one of TotalView’s predefined sets, each identified by a letter. For example, the following command sets the
focus to the workers group:
dfocus W

Table 10 defines the group specifiers, which must be in uppercase:

Table 10: Arena group specifiers

Group specifier Target of command

C Control group
All processes in the control group containing the process of
interest.

D Default control group
All processes in the control group containing the process of inter-
est. This is the same as the C group specifier except that it’s not
displayed with the arena.

S Share group
The set of processes in the control group that have the same exe-
cutable as the process of interest.

Arenas and P/T Sets Arena Specifier Examples 356

Group, Process, and Thread Control

Identifying a Group Using a Number

You can identify a group by the number TotalView assigns to it. The following example sets the focus to group 3:
dfocus 3/

The trailing slash marks this as a group number instead of a DPID. The slash character is optional if you’re using a
group letter specifier. However, you must use it as a separator when entering a numeric group ID and a dpid.dtid
pair. For example, the following example identifies process 2 in group 3:
p3/2

Identifying a Group Using a Name

You can name a set that you define. Enter this name with slashes. The following example sets the focus to the set
of threads contained in process 3 that are also contained in a group called my_group:
dfocus p/my_group/3

Arena Specifier Examples

Naming Incomplete Arenas

You can omit parts of the arena specifier if the meaning remains unambiguous. A missing width, group, or pro-
cess ID will be assumed, based on the current focus. A missing thread ID is always assumed to be <. Some
examples:

 If you omit the DTID, TotalView uses the default <, where < indicates the first worker thread in
process 1:
d1.<
If, however, the arena explicitly names a thread group, < means the first thread in the thread group.

W Workers group
The set of all worker threads in the control group containing the
process of interest, which typically contains threads from multiple
processes.

L Lockstep group
A set that contains all threads in the share group that have the
same PC as the arena’s thread if interest. If you step these threads
as a group, they proceed in lockstep.

Table 10: Arena group specifiers

Group specifier Target of command

Arenas and P/T Sets Arena Specifier Examples 357

Group, Process, and Thread Control

 If you don’t use a width, TotalView uses the width from the current focus.

 If you don’t use a DPID, TotalView uses the DPID from the current focus.

 If you set the focus to a list, there is no longer a default arena. This means that you must explicitly
name a width and a DPID.

TotalView does not use the DTID from the current focus, since the DTID is a process-relative value.

 A dot before or after the number specifies a process or a thread. For example, 1. is clearly a DPID,
while .7 is a DTID.

If you type a number without a dot, the CLI most often interprets the number as being a DPID.

 If the width is t, you can omit the dot. For instance, t7 refers to thread 7.

 If you enter a width and don’t specify a DPID or DTID, TotalView uses the DPID and DTID from the
current focus.

If you use a letter as a group specifier, TotalView obtains the rest of the arena specifier from the default
focus.

 You can use a group ID or tag followed by a /. TotalView obtains the rest of the arena from the
default focus.

Focus merging can also influence how TotalView fills in missing specifiers. For more information, see Merging
Focuses on page 360.

Combining Arena and Group Specifiers

Table 11 defines the selected target when using arena and group specifiers to step a program:

Table 11: Combining Arena and Group Specifiers

Arena specifier
combination Target of command

aC
aS
aW
aL

All processes and threads. (The group specifier is not relevant when you use the
all “a” width specifier.)

gC All processes in the thread of interest’s (TOI)’s control group.

gS All processes in the TOI’s share group.

gW All worker threads in the control group that contains the TOI.

gL All threads in the share group that are currently at the same PC as the TOI.

Arenas and P/T Sets Arena Specifier Examples 358

Group, Process, and Thread Control

Here are additional examples that add DPID and DTID numbers to the raw specifier combinations from Table 11:

pW3

All worker threads in process 3.

gW3

All worker threads in the control group that contains process 3. The difference between this and pW3 is that
pW3 restricts the focus to just process 3.

gL3.2

All threads in the same share group as process 3 that are executing at the same PC as thread 2 in process 3.

3

Specifies process 3. The arena width, POI, and TOI are inherited from the enclosing P/T set, so the exact meaning
of this specifier depends on the previous context.

While the slash is unnecessary because no group is indicated, it is syntactically correct.

g3.2/3

The 3.2 group ID is the name of the lockstep group for thread 3.2. This group includes all threads in the process
3 share group that are executing at the same PC as thread 2.

p3/3

Sets the process to process 3. The group of interest (GOI) is set to group 3. If group 3 is a process group, most
commands ignore the group setting. If group 3 is a thread group, most commands act on all threads in process
3 that are also in group 3.

When you set the process using an explicit group, you might not be including all the threads you expect to be in-
cluded. This is because commands must look at the TOI, process of interest (POI), and GOI.

pC
pS

All threads in the process of interest (POI).

pW All worker threads in the POI.

pL All threads in the POI that are currently at the same PC as the TOI.

tC
tS
tW
tL

Just the TOI. The t specifier overrides the group specifier, so all of these specifiers
resolve to the current thread.

Table 11: Combining Arena and Group Specifiers

Arena specifier
combination Target of command

Arenas and P/T Sets Arena Specifier Examples 359

Group, Process, and Thread Control

NOTE: It is redundant to specify a thread width with an explicit group ID as this width
means that the focus is on one thread.

In the following examples, the first argument to the dfocus command defines a temporary P/T set that the CLI
command (the last term) operates on. The dstatus command lists information about processes and threads.
These examples assume that the global focus was d1.< initially.

dfocus g dstatus

Displays the status of all threads in the control group.

dfocus gW dstatus

Displays the status of all worker threads in the control group.

dfocus p dstatus

Displays the status of all threads in the current focus process. The width is process, and the (default) group is the
control group.

dfocus pW dstatus

Displays the status of all worker threads in the current focus process. The width is process level, and the target is
the workers group.

The following example shows how the prompt changes as you change the focus. In particular, notice how the
prompt changes when you use the C and the D group specifiers.
d1.<> f C
dC1.<
dC1.<> f D
d1.<
d1.<>

Two of these lines end with the less-than symbol (<). These lines are not prompts. Instead, they are the value
returned by TotalView when it executes the dfocus command.

Naming Lists with Inconsistent Widths

You can create lists that contain more than one width specifier. This can be very useful, but it can be confusing.
Consider the following:
{p2 t7 g3.4}

This list is quite explicit: all of process 2, thread 7, and all processes in the same group as process 3, thread 4.
However, how should TotalView use this set of processes, groups, and threads?

In most cases, TotalView does what you would expect: it iterates over the list and acts on each arena separately. If
TotalView cannot interpret an inconsistent focus, it prints an error message.

Arenas and P/T Sets Using P/T Set Operators 360

Group, Process, and Thread Control

Some commands work differently. Some use each arena’s width to determine the number of threads on which it
acts. This is exactly what the dgo command does. In contrast, the dwhere command creates a call graph for pro-
cess-level arenas, and the dstep command runs all threads in the arena while stepping the thread of interest
(TOI). TotalView may wait for threads in multiple processes for group-level arenas. The command description in
the TotalView Reference Guide points out anything that you need to watch out for.

Merging Focuses

When you specify more than one focus for a command, the CLI merges them. The following example combines
dfocus and dstatus commands. The focus indicated by the prompt—called the outer focus—determines the
output of dstatus.

Note that f is a CLI alias for dfocus.
t1.<> f d
d1.<
d1.<> f tL dstatus
1: 37258 Breakpoint [omp_prog]
 1.1: 37258.1 Breakpoint PC=0x1000acd0,
 [./omp_prog.f#35]
d1.<> f tL f p dstatus
1: 37258 Breakpoint [omp_prog]
 1.1: 37258.1 Breakpoint PC=0x1000acd0,
 [./omp_prog.f#35]
 1.3: 37258.3 Breakpoint PC=0x1000acd0,
 [./omp_prog.f#35]
d1.<> f tL f p f D dstatus
1: 37258 Breakpoint [omp_prog]
 1.1: 37258.1 Breakpoint PC=0x1000acd0,
 [./omp_prog.f#35]
 1.2: 37258.2 Stopped PC=0xffffffffffffffff
 1.3: 37258.3 Breakpoint PC=0x1000acd0,
 [./omp_prog.f#35]
d1.<> f tL f p f D f L dstatus
1: 37258 Breakpoint [omp_prog]
 1.1: 37258.1 Breakpoint PC=0x1000acd0,
 [./omp_prog.f#35]
 1.3: 37258.3 Breakpoint PC=0x1000acd0,
 [./omp_prog.f#35]

Stringing multiple focuses together might not produce the most readable result. In this case, it shows how one
dfocus command can modify the arena on which another command operates.

Using P/T Set Operators
At times, you do not want all of one type of group or process to be in the focus set. In this case, use the following
three operators to manage your P/T sets:

|

Creates a union; that is, all members of two sets.

Arenas and P/T Sets Using P/T Set Operators 361

Group, Process, and Thread Control

-

Creates a difference; that is, all members of the first set that are not also members of the second set.

&

Creates an intersection; that is, all members of the first set that are also members of the second set.

For example, the following creates a union of two P/T sets:
p3 | L2

You can combine these operations, for example:
p2 | p3 & L2

This statement creates an intersection between p3 and L2, and then creates a union between p2 and the results
of the intersection operation. You can directly specify the order by using parentheses; for example:
p2 | (p3 & pL2)

Typically, these three operators are used with the following P/T set functions:

breakpoint(ptset)
Returns a list of all threads that are stopped at a breakpoint.

comm(process, “comm_name”)

Returns a list containing the first thread in each process associated within a communicator within the named
process. While process is a P/T set it is not expanded into a list of threads.

error(ptset)
Returns a list of all threads stopped due to an error.

existent(ptset)
Returns a list of all threads.

held(ptset)
Returns a list of all threads that are held.

nonexistent(ptset)
Returns a list of all processes that have exited or which, while loaded, have not yet been created.

running(ptset)
Returns a list of all running threads.

stopped(ptset)
Returns a list of all stopped threads.

unheld(ptset)
Returns a list of all threads that are not held.

watchpoint(ptset)
Returns a list of all threads that are stopped at a watchpoint.

Arenas and P/T Sets Setting and Creating Custom Groups 362

Group, Process, and Thread Control

The way in which you specify the P/T set argument is the same as the way that you specify a P/T set for the dfocus
command. For example, watchpoint(L) returns all threads in the current lockstep group that are stopped at a
watchpoint. The only operator that differs is comm, whose argument is a process.

The dot operator (.), which indicates the current set, can be helpful when you are editing an existing set.

The following examples clarify how you use these operators and functions. The P/T set a (all) is the argument to
these operators.

f {breakpoint(a) | watchpoint(a)} dstatus

Shows information about all threads that are stopped at breakpoints or watchpoints. The a argument is the
standard width specifier for all.

f {stopped(a) - breakpoint(a)} dstatus

Shows information about all stopped threads that are not stopped at breakpoints.

f {. | breakpoint(a)} dstatus

Shows information about all threads in the current set, as well as all threads stopped at a breakpoint.

f {g.3 - p6} duntil 577

Runs thread 3 along with all other processes in the group to line 577. However, it does not run anything in pro-
cess 6.

f {($PTSET) & p123}

Uses just process 123 in the current P/T set.

Setting and Creating Custom Groups

This section presents a series of examples that set and create groups. To create a custom group, use the com-
mand dgroups.

You can use the following methods to indicate that thread 3 in process 2 is a worker thread:

dset WGROUP(2.3) $WGROUP(2)
Assigns the group ID of the thread group of worker threads associated with process 2 to the WGROUP variable.
(Assigning a nonzero value to WGROUP indicates that this is a worker group.)

dset WGROUP(2.3) 1
This is a simpler way of doing the same thing as the previous example.

dfocus 2.3 dworker true
Adds the threads in the indicated focus to a workers group.

dset CGROUP(2) $CGROUP(1)
dgroups -add -g $CGROUP(1) 2
dfocus 1 dgroups -add 2

These three commands insert process 2 into the same control group as process 1.

Arenas and P/T Sets Setting and Creating Custom Groups 363

Group, Process, and Thread Control

dgroups -add -g $WGROUP(2) 2.3
Adds process 2, thread 3 to the workers group associated with process 2.

dfocus tW2.3 dgroups -add
This is a simpler way of doing the same thing as the previous example.

Following are some additional examples:

dfocus g1 dgroups -add -new thread

Creates a new thread group that contains all the threads in all the processes in the control group associated with
process 1.

set mygroup [dgroups -add -new thread $GROUP($SGROUP(2))]
dgroups -remove -g $mygroup 2.3
dfocus g$mygroup/2 dgo

The first command creates a new group that contains all the threads from the process 2 share group; the sec-
ond removes thread 2.3; and the third runs the remaining threads.

Using the g Specifier: An Extended Example

The meaning of the g width specifier is sometimes not clear when it is coupled with a group scope specifier. Why
have a g specifier when you have four other group specifiers? Stated in another way, isn’t something like gL
redundant?

The simplest answer, and the reason you most often use the g specifier, is that it forces the group when the
default focus indicates something different from what you want it to be.

The following example shows this. The first step sets a breakpoint in a multi-threaded OMP program and exe-
cutes the program until it hits the breakpoint.
d1.<> dbreak 35
1
d1.<> dcont
Thread 1.1 has appeared
Created process 1/37258, named "omp_prog"
Thread 1.1 has exited
Thread 1.1 has appeared
Thread 1.2 has appeared
Thread 1.3 has appeared
Thread 1.1 hit breakpoint 1 at line 35 in ".breakpoint_here"

RELATED TOPICS
The dfocus command dfocus in "CLI Commands" in the TotalView Reference Guide

The dgroup command group in "CLI Commands" in the TotalView Reference Guide

The dset command dset in "CLI Commands" in the TotalView Reference Guide

Arenas and P/T Sets Setting and Creating Custom Groups 364

Group, Process, and Thread Control

The default focus is d1.<, which means that the CLI is at its default width, the process of interest (POI) is 1, and the
thread of interest (TOI) is the lowest numbered nonmanager thread. Because the default width for the dstatus
command is process, the CLI displays the status of all processes. Typing dfocus p dstatus produces the same
output.
d1.<> dstatus
1: 37258 Breakpoint [omp_prog]
 1.1: 37258.1 Breakpoint PC=0x1000acd0,
 [./omp_prog.f#35]
 1.2: 37258.2 Stopped PC=0xffffffffffffffff
 1.3: 37258.3 Stopped PC=0xd042c944
d1.<> dfocus p dstatus
1: 37258 Breakpoint [omp_prog]
 1.1: 37258.1 Breakpoint PC=0x1000acd0,
 [./omp_prog.f#35]
 1.2: 37258.2 Stopped PC=0xffffffffffffffff
 1.3: 37258.3 Stopped PC=0xd042c944

The CLI displays the following when you ask for the status of the lockstep group. (The rest of this example uses
the f abbreviation for dfocus, and st for dstatus.)
d1.<> f L st
1: 37258 Breakpoint [omp_prog]
 1.1: 37258.1 Breakpoint PC=0x1000acd0,
 [./omp_prog.f#35]

This command displays the status of the threads in thread, which is the 1.1 lockstep group since this thread is the
TOI. The f L focus command narrows the set so that the display only includes the threads in the process that are
at the same PC as the TOI.

By default, the dstatus command displays information at process width. This means that you don’t need to type f
pL dstatus.

The duntil command runs thread 1.3 to the same line as thread 1.1. The dstatus command then displays the
status of all the threads in the process:
d1.<> f t1.3 duntil 35
 35@> write(*,*)"i= ",i,
 "thread= ",omp_get_thread_num()
d1.<> f p dstatus
1: 37258 Breakpoint [omp_prog]
 1.1: 37258.1 Breakpoint PC=0x1000acd0,
 [./omp_prog.f#35]
 1.2: 37258.2 Stopped PC=0xffffffffffffffff
 1.3: 37258.3 Breakpoint PC=0x1000acd0,
 [./omp_prog.f#35]

As expected, the CLI adds a thread to the lockstep group:
d1.<> f L dstatus
1: 37258 Breakpoint [omp_prog]
 1.1: 37258.1 Breakpoint PC=0x1000acd0,
 [./omp_prog.f#35]
 1.3: 37258.3 Breakpoint PC=0x1000acd0,
 [./omp_prog.f#35]

Arenas and P/T Sets Changing the P/T Using the dfocus Command 365

Group, Process, and Thread Control

The next set of commands begins by narrowing the width of the default focus to thread width—notice that the
prompt changes—and then displays the contents of the lockstep group:
d1.<> f t
t1.<> f L dstatus
1: 37258 Breakpoint [omp_prog]
 1.1: 37258.1 Breakpoint PC=0x1000acd0,
 [./omp_prog.f#35]

Although the lockstep group of the TOI has two threads, the current focus has only one thread, and that thread is,
of course, part of the lockstep group. Consequently, the lockstep group in the current focus is just the one thread,
even though this thread’s lockstep group has two threads.

If you ask for a wider width (p or g) with L, the CLI displays more threads from the lockstep group of thread 1.1. as
follows:
t1.<> f pL dstatus
1: 37258 Breakpoint [omp_prog]
 1.1: 37258.1 Breakpoint PC=0x1000acd0,
 [./omp_prog.f#35]
 1.3: 37258.3 Breakpoint PC=0x1000acd0,
 [./omp_prog.f#35]
t1.<> f gL dstatus
1: 37258 Breakpoint [omp_prog]
 1.1: 37258.1 Breakpoint PC=0x1000acd0,
 [./omp_prog.f#35]
 1.3: 37258.3 Breakpoint PC=0x1000acd0,
 [./omp_prog.f#35]

If the TOI is 1.1, L refers to group number 1.1, which is the lockstep group of thread 1.1.

Because this example only contains one process, the pL and gL specifiers produce the same result when used
with the dstatus command. If, however, there were additional processes in the group, you only see them when
you use the gL specifier.

Changing the P/T Using the dfocus Command
You can change the focus on which a command acts using the dfocus command. If the CLI executes the dfocus
command without a subcommand, it changes the default P/T set. For example, if the default focus is process 1,
the following command changes the default focus to process 2:
dfocus p2

After TotalView executes this command, all commands that follow focus on process 2.

If you begin a command with dfocus, TotalView changes the target only for the subcommand that follows. After
the subcommand executes, TotalView restores the former default. The following example shows both of these
ways to use the dfocus command. Assume that the current focus is process 1, thread 1. The following com-
mands change the default focus to group 2 and then step the threads in this group twice:
dfocus g2
dstep

Arenas and P/T Sets Changing the P/T Using the dfocus Command 366

Group, Process, and Thread Control

dstep
In contrast, if the current focus is process 1, thread 1, the following commands step group 2 and then step pro-
cess 1, thread 1:
dfocus g2 dstep
dstep

Some commands operate only at the process level; that is, you cannot apply them to a single thread (or group of
threads) in the process, but must apply them to all or to none.

Stepping and Program Execution Changing the P/T Using the dfocus Command 367

Group, Process, and Thread Control

Stepping and Program Execution
Use TotalView execution commands to:

 Execute one source line or machine instruction at a time, including stepping into any subroutines;
for example, Process > Step in the UI and dstep in the CLI.

 Execute one source line, stepping over subroutine calls; for example, Process > Next in the UI and
dnext in the C:LI.

 Run to a selected line, which acts like a temporary breakpoint; for example, Process > Run To.

 Run until a function call returns; for example, Process > Out.

 Advance the program by single assembler instructions.

 Advance the program by single assembler instructions, stepping over subroutine calls.

In all cases, execution commands operate on the thread of interest (TOI). In the CLI, the TOI is the thread that
TotalView uses to determine the scope of the execution operation. In the UI, the TOI is the thread selected in the
Processes and Threads view.

In this section:

 Individual Execution Commands on page 368

 Executing at Group Width on page 369

 Executing at Process Width on page 370

 Executing at Thread Width on page 370

CLI: dstep

CLI: dnext

CLI: duntil

CLI: dout

CLI: dstepi

CLI: dnexti

Stepping and Program Execution Individual Execution Commands 368

Group, Process, and Thread Control

 Synchronizing Processes and Threads on page 371

Individual Execution Commands
In the UI, the focus of any execution command is the thread selected in the Processes and Threads view, and the
width control selected from the Focus menu. In Figure 118, the thread of interest (TOI) is 7.1, and the width is
process; TotalView will advance all threads in the process that contains the TOI, or process 7.

Figure 118, The Focus menu in the UI

The term goal identifies the location at which a given command will stop executing. For example, for a Step com-
mand, the goal is the “next line,” even if it’s in a different subroutine, while for a Run to command, the goal is the
selected line. A Go command has no defined goal.

Table 12 defines the default action each execution command takes. Execution commands all default to process
width if no other width is provided.

NOTE: Table 12 includes commands available in the UI. Some other execution commands are avail-
able only in the CLI, in particular drun and drerun used after dload if you have a starter
program. See “CLI Commands” in the TotalView Reference Guide for more information.

RELATED TOPICS
Stepping examples CLI Stepping Examples on page 373

Stepping and Program Execution Executing at Group Width 369

Group, Process, and Thread Control

Executing at Group Width
Executing at group width depends on whether the group of interest (GOI) is a process group or a thread group.

 Process group—TotalView examines the group and identifies which of its processes has a thread
stopped at the same location as the thread of interest (TOI) (i.e. a matching process). TotalView runs
these matching processes until one of their threads arrives at the goal. At that point, TotalView
stops the thread’s process. The command finishes when it has stopped all matching processes.

Table 12: Execution Commands’ Default Actions

Command Default action

Go Continues all processes and threads in the current focus.
See dgo in the TotalView Reference Guide.

Halt Stops all processes and threads in the current focus.
See dhalt in the TotalView Reference Guide.

Kill Kills all target processes in the current focus. If, however, you kill the primary process for a
control group, all processes in the control group are killed.
Process-level only. This command cannot be used at thread-width.
See dkill in the TotalView Reference Guide.

Restart Kills all processes in the current control group, then restarts the process that was in the cur-
rent focus.
This command is relevant only to a group. To restart a process, use drerun.
See dkill in the TotalView Reference Guide.

Next Steps one source line, stepping over any subroutine calls.
See dnext in the TotalView Reference Guide.

Step Steps the thread of interest one source line while allowing other threads in the process to
run freely. If a statement in a source line call a subroutine, this command steps into the
function.
See dstep in the TotalView Reference Guide.

Out Runs a thread until it returns from either of the current subroutine or one or more nested
subroutines. When using the default process width, all threads in the process that are not
running to this goal run free.
See dout in the TotalView Reference Guide.

Run To Runs the process until a selected location is reached, usually a line in the Source view. If this
command is applied to a group, its behavior differs depending on the width.
See duntil in the TotalView Reference Guide.

Stepping and Program Execution Executing at Process Width 370

Group, Process, and Thread Control

 Thread group—TotalView runs all processes in the control group. However, as each thread arrives at
the goal, TotalView stops only that thread; the rest of the threads in the same process continue
executing. The command finishes when all threads in the GOI arrive at the goal. When the
command finishes, TotalView stops all processes in the control group.

TotalView doesn’t wait for threads that are not in the same share group as the TOI, since they are executing differ-
ent code and can never arrive at the goal.

Executing at Process Width
Executing at process width (which is the default) depends on whether the group of interest (GOI) is a process
group or a thread group.

 Process group—TotalView runs all threads in the process, and execution continues until the thread
of interest (TOI) arrives at its goal, which can be the next statement, the next instruction, and so on.
Only when the TOI reaches the goal does TotalView stop the other threads in the process.

 Thread group—TotalView lets all threads in the GOI run. As each member of the GOI arrives at the
goal, TotalView stops it; the rest of the threads continue executing. The command finishes when all
members of the GOI arrive at the goal. At that point, TotalView stops the whole process.

Executing at Thread Width
Executing at thread width runs only that thread. No other threads run. In contrast, process width runs all threads
in the process that are allowed to run while the thread of interest (TOI) is advanced.

Executing a thread isn’t the same as advancing a thread’s process, because a process can have more than one
thread.

NOTE: Thread-stepping is not implemented on Sun platforms. On SGI platforms, thread-stepping is
not available with pthread programs. If, however, your program’s parallelism is based on SGI’s
sprocs, thread-stepping is available.

Thread-level, single-step operations can fail to complete if the TOI needs to synchronize with a thread that isn’t
running. For example, if the TOI requires a lock that another held thread owns, and steps over a call that tries to
acquire the lock, the primary thread can’t continue successfully. You must allow the other thread to run in order
to release the lock. In this case, you should use process-width stepping instead.

Stepping and Program Execution Synchronizing Processes and Threads 371

Group, Process, and Thread Control

Synchronizing Processes and Threads
When you are running a multi-process or multi-threaded program, it’s frequently useful to synchronize execution
to the same place. You can do this manually using a Hold command, or automatically by setting a barrier point.
You can also use the Run To command (or duntil in the CLI) to run to a specified line in the Source view, which
can synchronize processes and threads so you can step them together.

Holding and Releasing Processes and Threads

You can synchronize execution manually using a hold command, or automatically by setting a barrier point.

When a process or a thread is held, it ignores any command to resume executing. For example, if you placed a
hold on a single process in a control group that contained three processes, selecting Group > Go would resume
executing just the other two processes in the group. The held process would ignore the Go command.

Manually holding and releasing processes and threads is useful when:

 You need to run a subset of the processes and threads. You can manually hold all but those you
want to run.

 A process or thread is held at a barrier point and you want to run it without first running all the
other processes or threads in the group to that barrier. In this case, you release the process or the
thread manually and then run it.

See Barrier Points on page 139 for more information on manually holding and releasing barrier break-
points.

Holding a Process

To hold or release a hold on a process, select the process in the Processes & Threads view, then toggle the menu
item Process > Hold:

When TotalView is holding a process, the Processes & Threads view displays Stopped, and the title and status bar
display “[Held”] for that process.

If a process or a thread is running when you set or release a hold, TotalView stops the process or thread and then
holds it. TotalView lets you hold and release processes independently from threads.

Stepping and Program Execution Synchronizing Processes and Threads 372

Group, Process, and Thread Control

If you hold a process, then choose Process > Go, TotalView launches a warning popup that you first need to
unhold the process before running it:

Holding a Thread

NOTE: The ability to hold a thread will be added to the UI in an upcoming release.

(CLI only)). To hold or release a thread, use the CLI:

Setting the focus changes the scope.

Using Run To and duntil

The Run To command in the UI, and the duntil command in the CLI, run to a selected line in the Source view
code, helping to synchronize processes and threads so you can step them together. Using this command at pro-
cess width or group width differs.

At process width:

 If the thread of interest (TOI) is already at the goal location, TotalView steps the TOI past the line
before the process runs. This lets you use the Run To command repeatedly in loops.

 If any other thread in the process is already at the goal, TotalView temporarily holds it while other
threads in the process run. After all threads in the process reach the goal, TotalView stops the
process. This lets you synchronize the threads in the process of interest (POI) at a source line.

dhold -thread
dunhold -thread

Stepping and Program Execution CLI Stepping Examples 373

Group, Process, and Thread Control

At group width:

 TotalView identifies all processes in the control group that already have a thread stopped at the
goal. These are the matching processes. TotalView then runs only non-matching processes.
Whenever a thread arrives at the goal, TotalView stops its process. The command finishes when it
has stopped all processes in the control group. This lets you synchronize at least one thread from
all processes in preparation for group-stepping them.

CLI Stepping Examples
The following are examples that use the CLI stepping commands:

 Step a single thread

While the thread runs, no other threads run (except kernel manager threads).

Example: dfocus t dstep

 Step a single thread while the process runs

A single thread runs into or through a critical region.

Example: dfocus p dstep

 Step one thread in each process in the group

While one thread in each process in the share group runs to a goal, the rest of the threads run freely.

Example: dfocus g dstep

 Step all worker threads in the process while nonworker threads run

Worker threads run through a parallel region in lockstep.

Example: dfocus pW dstep

 Step all workers in the share group

All processes in the share group participate. The nonworker threads run.

Example: dfocus gW dstep

 Step all threads that are at the same PC as the TOI

RELATED TOPICS
Setting barrierpoints Barrier Points on page 139

Using duntil to run to a selected line duntil in the TotalView Reference Guide

Stepping and Program Execution CLI Stepping Examples 374

Group, Process, and Thread Control

TotalView selects threads from one process or the entire share group. This differs from the previous two
items in that TotalView uses the set of threads that are in lockstep with the thread of interest (TOI) rather
than using the workers group.

Example: dfocus L dstep

In the following examples, the default focus is set to d1.<.

dstep

Steps the TOI while running all other threads in the process.

dfocus W dnext

Runs the TOI and all other worker threads in the process to the next statement. Other threads in the process
run freely.

dfocus W duntil 37

Runs all worker threads in the process to line 37.

dfocus L dnext

Runs the TOI and all other stopped threads at the same PC to the next statement. Other threads in the process
run freely. Threads that encounter a temporary breakpoint in the course of running to the next statement usu-
ally join the lockstep group.

dfocus gW duntil 37

Runs all worker threads in the share group to line 37. Other threads in the control group run freely.

UNW 37

Performs the same action as the previous command: runs all worker threads in the share group to line 37. This
example uses the predefined UNW alias instead of the individual commands. That is, UNW is an alias for dfo-
cus gW duntil.

SL

Finds all threads in the share group that are at the same PC as the TOI and steps them all in one statement. This
command is the built-in alias for dfocus gL dstep.

sl

Finds all threads in the current process that are at the same PC as the TOI, and steps them all in one statement.
This command is the built-in alias for dfocus L dstep.

Execution Commands Using the “all” Arena Specifier

These examples illustrate using commands with the a “all” arena specifier.

RELATED TOPICS
Execution commands Stepping and Program Execution on page 367

Stepping and Program Execution CLI Stepping Examples 375

Group, Process, and Thread Control

f aC dgo

Runs everything. If you’re using the dgo command, everything after the a is ignored: a/aPizza/17.2, ac, aS, and
aL do the same thing. TotalView runs everything.

f aL dstep

Runs only the threads in the thread of interest (TOI)'s lockstep group. All other threads run freely until the step-
ping process for these lockstep threads completes.

f aC duntil

While everything runs, TotalView must wait until something reaches a goal. It really isn’t obvious what this focus
is. Since C is a process group, you might guess that all processes run until at least one thread in every participat-
ing process arrives at a goal. The reality is that since this goal must reside in the current share group, this com-
mand completes as soon as all processes in the TOI share group have at least one thread at the goal. Processes
in other control groups run freely until this happens.

The TOI determines the goal. If there are other control groups, they do not participate in the goal.

f aS duntil

This command does the same thing as the f aC duntil command because the goals for f aC duntil and f aS
duntil are the same, and the processes that are in this scope are identical.

Although more than one share group can exist in a control group, these other share groups do not participate in
the goal.

f aL duntil

Although everything will run, it is not clear what should occur. L is a thread group, so you might expect that the
duntil command will wait until all threads in all lockstep groups arrive at the goal. Instead, TotalView defines the
set of threads that it allows to run to a goal as just those threads in the TOI’s lockstep group. Although there are
other lockstep groups, these lockstep groups do not participate in the goal. So, while the TOI’s lockstep threads
are progressing towards their goal, all threads that were previously stopped run freely.

f aW duntil

Everything runs. TotalView waits until all members of the TOI workers group arrive at the goal.

376

Scalability in HPC Computing
Environments

TotalView provides features and performance enhancements for scalable debugging in today’s HPC comput-
ing environments, and no special configuration or action is necessary on your part to take advantage of
TotalView’s scalability abilities.

This chapter details TotalView’s features and configurations related to scalability:

 Scalability Configuration Settings. Depending on your needs, you might want to set specific
configuration variables that enable scalable debugging operations.

 MRNet Configuration Settings. TotalView uses MRNet, a tree-based overlay network, for
scalable communication. TotalView is preconfigured for scalability, but in some situations you
may want to change MRNet's configuration.

Other areas of TotalView that can help support scalability are:

 The Processes and Threads View. This view aggregates program state so that it can display
quickly and is easy to understand.

 dstatus and dwhere command options. These options provide aggregated views of various
process and thread properties. (See the -group_by option in the TotalView Reference Guide
entries for these commands.)

 Compressed process/thread list. The ptlist compactly displays the set of processes and
threads that have been aggregated together.

RELATED TOPICS
Compressed List Syntax (ptlist) “Compressed List Syntax (ptlist)” in the dstatus entry of the

TotalView Reference Guide

dstatus -group_by and dwhere-group_by
options

dstatus and dwhere in the TotalView Reference Guide

Configuring TotalView for Scalability Disable User-Thread Debugging 377

Scalability in HPC Computing Environments

Configuring TotalView for Scalability
You can configure TotalView in various ways to take advantage of features that improve startup performance and
scalability for large-scale parallel jobs.

Disable User-Thread Debugging
Disabling user-thread debugging can help improve debugger performance. User thread debugging is an area of
the debugger that has not yet been parallelized, and can therefore slow down job launch and attach time. How-
ever, disabling user thread debugging also disables support for displaying thread local storage (e.g., via the
__thread compiler keyword.

To configure TotalView with these settings, create a TotalView startup file in <totalviewInstallDir>/<PLATFORM>/lib/
.tvdrc and add the following lines:

If TLS is not required, disable user threads for faster launch
and attach times
dset -set_as_default TV::user_threads false

Tune Dynamic Library Load Processing
When a target process calls dlopen(), a dlopen event is generated and must be handled by TotalView. Because
dlopen event handling can affect debugger performance for a variety of reasons, especially if the application
loads many shared libraries or the debugger is controlling many processes, TotalView provides ways to configure
dlopen for better performance and scalability in HPC computing environments:

 Filtering dlopen events to avoid stopping a process for each event.

 Handling dlopen events in parallel, reducing client/server communication overhead to fetch
library information.

Note that both this option and MRNet must be enabled for TotalView to fetch libraries in parallel.

Filtering dlopen Events

Typically, TotalView processes all dynamic shared libraries as they are loaded, looking for locations where break-
points need to be planted and processing debug symbols in order to give developers the most information about
their application. This processing takes time and can greatly slow down the startup of the debugger. This extra
work may be unnecessary if no breakpoints need to be planted in the shared libraries.

Configuring TotalView for Scalability Tune Dynamic Library Load Processing 378

Scalability in HPC Computing Environments

Filtering dlopen events may be particularly beneficial when using Open MPI or other highly dynamic runtime
libraries.

TotalView provides two dlopen state variables and related command line options to defer planting breakpoints in
dynamically loaded libraries until the process stops for some other reason. Deferring dlopen event processing
allows the debugger to handle all dynamically loaded shared libraries at the same time, which is much more effi-
cient than handling them serially.

Use these state variables to configure a dynamic library processing mode of either Fast, Medium, or Slow.

 In Fast mode, the process never stops for a dlopen event, not even for "null" dlopen events. Using
this option can result in significant performance gains, but may be impractical for some
applications because any breakpoints in a dynamic library won’t be enabled until later in program
execution.

 In Medium mode, some libraries can be specified to either immediately reevaluate or defer
evaluation of breakpoint specifications, rather than all or none. This allows for a more fine grained
approach in processing library symbols and setting breakpoints in order to stop early in program
execution.

 In Slow mode, every dlopen event results in the immediate reevaluation of breakpoint
specifications.

For detail, see “Filtering dlopen Events” in the TotalView Reference Guide.

Handling dlopen Events in Parallel

TotalView’s default behavior is to handle dlopened libraries serially, creating multiple, single-cast client-server
communications. This can degrade performance, depending on the number of libraries a process dlopens, and
the number of processes in the job.

Instead, you can configure the debugger to support handling events in parallel using the state variable and com-
mand line option TV::dlopen_read_libraries_in_parallel and -dlopen_read_libraries_in_parallel. MRNet must
also be enabled for this to work.

For detail, see Handling dlopen Events in Parallel in the TotalView Reference Guide.

MRNet TotalView Infrastructure Models 379

Scalability in HPC Computing Environments

MRNet
MRNet stands for “Multicast/Reduction Network.” MRNet uses a tree-based front-end to back-end communica-
tion model to significantly improve the efficiency of data multicast and aggregation for front-end tools running on
massively parallel systems.

The following description is from the MRNet web site (http://www.paradyn.org/mrnet/):
MRNet is a software overlay network that provides efficient multicast and reduction communications for parallel
and distributed tools and systems. MRNet uses a tree of processes between the tool's front-end and back-ends to
improve group communication performance. These internal processes are also used to distribute many important
tool activities, reducing data analysis time and keeping tool front-end loads manageable.
MRNet-based tool components communicate across logical channels called streams. At MRNet internal processes,
filters are bound to these streams to synchronize and aggregate dataflows. Using filters, MRNet can efficiently com-
pute averages, sums, and other more complex aggregations and analyses on tool data. MRNet also supports facili-
ties that allow tool developers to dynamically load new tool-specific filters into the system.

Rogue Wave’s use of MRNet is part of a larger strategy to improve the scalability of TotalView as high-end comput-
ers grow into very high process and thread counts.

TotalView supports MRNet on Linux x86_64, Linux ARM64, Linux PowerLE clusters, and Cray XT/XE/XK/XC.

TotalView Infrastructure Models
Starting with Classic TotalView 8.11.0, the TotalView debugger supported two infrastructure models that control
the way the debugger organizes its TotalView debugger server processes when debugging a parallel job involving
multiple compute nodes. As of Classic TotalView 8.15, TotalView uses the tree-based infrastructure described
below by default.

The first model uses a “flat vector” of TotalView debugger server processes. The TotalView debugger has always
supported this model, and still does. Under the flat vector model, the debugger server processes have a direct
(usually socket) connection to the TotalView front-end client. This model works well at low process scales, but
begins to degrade as the target application scales beyond a few thousand nodes or processes. This is the default
infrastructure model.

Figure 119 shows the TotalView client connected to four TotalView debugger servers (tvdsvr). In this example,
four separate socket channels directly connect the client to the debugger servers.

MRNet TotalView Infrastructure Models 380

Scalability in HPC Computing Environments

The second model uses MRNet to form a tree of debugger server and MRNet communication processes con-
nected to the TotalView front-end client, which forms the root of the tree. MRNet supports building many
different shapes of trees, but note that the shape of the tree (for example, depth and fan-out) can greatly affect
the performance of the debugger. The following sections describe how to control the shape of the MRNet tree in
TotalView.

Figure 120 shows an MRNet tree in which the TotalView client is connected to four TotalView debugger servers
through two MRNet commnode processes using a tree fan-out value of 2.

Figure 119, Flat Vector of Servers Infrastructure Model

Figure 120, MRNet Infrastructure Model

MRNet Using MRNet with TotalView 381

Scalability in HPC Computing Environments

Using MRNet with TotalView
TotalView is already preconfigured for maximum scalability, so no further customization is necessary. This section
is for advanced users and describes TotalView options and state variables related to the use of MRNet with
TotalView, as follows:

 General Use

 Using MRNet on Cray Computers

Please refer to the TotalView documentation for a general description of how options and state variables can be
used with TotalView.

General Use

This section discusses basic configuration options of MRNet with TotalView. If you are working on a Cray com-
puter, look at the section specific to that system as well.

Disabling MRNet Before Startup

By default, TotalView uses the MRNet infrastructure on the platforms where it is supported (see the TotalView Plat-
forms Guide for specifics). On platforms where MRNet is not supported, TotalView uses its standard vector-of-
servers infrastructure.

If for some reason you do not want to use the MRNet infrastructure to debug an MPI job, you must first disable
MRNet in TotalView before launching the MPI job. MRNet can be disabled by:

 Starting TotalView with the -nomrnet option:

prompt> totalview -nomrnet

 With TotalView running, use the command line interface (CLI) to set the TV::mrnet_enabled state
variable:

prompt> dset TV::mrnet_enabled false

MRNet Server Launch String

Option: -mrnet_server_launch_string string

State variable: TV::mrnet_server_launch_string string

Default string: %B/tvdsvr%K -working_directory %D -set_pw %P -verbosity %V %F

MRNet Using MRNet with TotalView 382

Scalability in HPC Computing Environments

The server launch string defines configuration options when launching a debugging server. TotalView has a
default string it uses when launching a server using the vector-of-servers architecture, and an option and state
variable that allow you to modify the default string. The MRNet usage of TotalView also has a default launch string
and corresponding option and state variables.

The MRNet launch string differs from the standard launch string in two ways: it does not contain a remote shell
command expansion (e.g., rsh or ssh), and it has no -callback option.

TotalView always appends the following string to the expanded MRNet launch string:

-mrnet_launch node_id

where node_id is an integer that specifies the server's TotalView node ID within the job. If node_id is 0, the
server assigns itself a node ID equal to its MRNet rank plus 1.

Controlling the Shape of an MRNet Tree

The shape of the MRNet tree calculated by TotalView can be controlled through a collection of options and state
variables. Given the list of hosts, which is typically extracted from the MPIR proctable, TotalView calculates an
MRNet topology string to create various shapes of trees.

These are the basic controls:

 Tree fan-out: specifies the maximum number of children a node can have. If the number of leaves
in the tree is not a power of the fan-out, some of the tree nodes will have fewer children.

 Tree depth: specifies the maximum depth of the tree (that is, the number of levels below the root).
If the number of leaves is not greater than the square of the tree depth value, a shallower tree is
built.

 Extra root node: Whether to allocate an extra communications node below the root.

 Create a “super bushy” tree: Create one debugger server process per MPI process rather than
the default of creating one debugger server process per node, to overcome a CUDA limitation.

MRNet Tree Fan-Out

Option: –mrnet_fanout integer

State variable: TV::mrnet_fanout integer

Default value: 32

If you change the default value, the new value must be greater than or equal to 2 and less than or equal to
32768.

MRNet Using MRNet with TotalView 383

Scalability in HPC Computing Environments

MRNet Tree Depth

Option: –mrnet_levels integer

State variable: TV::mrnet_levels integer

Default value: 2

The MRNet tree depth can be specified in terms of the number of levels below the root. If you change the
default value, the new value must be greater than or equal to -2 and less than or equal to 32.

 If the tree depth is 0, the MRNet tree fan-out value is used, and TotalView attempts to honor the
fan-out value near the bottom of the tree (the leaves).

 If the tree depth is set to a value that is greater than 0 (which includes the default value of 2), the
fan-out value is ignored and a balanced tree is built with at most the specified number of levels.

 If the tree depth is -1, the fan-out value is used, and TotalView attempts to honor the fan-out value
near the top (the root) of the tree, rather than near the bottom of the tree (the leaves).

 If the tree depth is -2, TotalView builds a tree similar to the one created when the tree depth is -1,
except that the tree is unbalanced from side-to-side.

As an example, consider a tree with a root node and eight leaf nodes. If the fan-out value is 4 and the tree
depth value is 0, a tree that is “bushy” near the leaves is built because TotalView honors fan-out at the leaf end
of the tree.
root:1 => n1:2 n5:2 ;

n1:2 => n1:1 n2:1 n3:1 n4:1 ;
n5:2 => n5:1 n6:1 n7:1 n8:1 ;

However, for the same tree when the tree depth setting is -1, a tree that is “bushy” near the root is built
because TotalView honors fan-out at the root end of the tree.
root:1 => n1:2 n3:2 n5:2 n7:2 ;

n1:2 => n1:1 n2:1 ;
n3:2 => n3:1 n4:1 ;
n5:2 => n5:1 n6:1 ;
n7:2 => n7:1 n8:1 ;

Allocate an Extra Root Node

Option: –mrnet_extra_root boolean

State variable: TV::mrnet_extra_root boolean

Default value: false

For example, for a tree with a root and eight leaf nodes, using a fan-out value of 4, a tree depth value of 0, and
requesting an extra root node, the following topology string will be calculated:
root:3 => root:1 ;

root:1 => n1:2 n5:2 ;

MRNet Using MRNet with TotalView 384

Scalability in HPC Computing Environments

n1:2 => n1:1 n2:1 n3:1 n4:1 ;
n5:2 => n5:1 n6:1 n7:1 n8:1 ;

Create a “Super Bushy” Tree

Option: -mrnet_super_bushy

State variable: TV::mrnet_super_bushy

Default value: false

Set this option to true if you are debugging an MPI job in which more than one CUDA process is running on a
node. This option addresses the CUDA debug API limitation that allows a debugger process (such as the
tvdsvr) to debug at most one target process using a GPU.

Path to MRNet Components

Option: -mrnet_commnode_path path-to-mrnet_commnode

State variable: TV::mrnet_commnode_path path-to-mrnet_commnode

Default value: tv-installation-root/platform/bin/mrnet_commnode

In a TotalView distribution, this is a path to a shell script that sets environment variables and execs the proper
executable for the platform.

Path to the MRNet shared library directory

Option: -mrnet_filterlib_dir path-to-mrnet-shlib-directory

State variable: TV::mrnet_filterlib_dir path-to-mrnet-shlib-directory

Default value: tv-installation-root/platform/shlib/mrnet/obj

The TotalView server tree filters library libservertree_filters.so.1 and the MRNet libxplat.so and
libmrnet.so libraries are stored in this directory.

Performance Notes

Perforce has conducted performance tests on some specific systems, and based on this testing, we’re providing a
few tips. These tips should be considered as guidelines. The only way to know how performance is affected by dif-
ferent tree configurations on your system is by trying out alternatives with your own jobs.

 In general, higher fan-outs seem to perform better than deeper trees. Specifically, trees deeper
than two levels consistently performed worse than a two-level tree.

 In our testing, a one-level tree failed due to resource shortages at around 512 nodes, so this is not
a viable option at higher scales.

MRNet Using MRNet with TotalView 385

Scalability in HPC Computing Environments

MRNet and ssh/rsh

Controlling MRNet’s Use of rsh vs ssh

When MRNet is used as the infrastructure in a Linux cluster front-end node, MRNet's built-in support is used to
instantiate the tree of debugger servers and communications processes. Tree instantiation is based on a remote
shell startup mechanism. By default, MRNet uses ssh as the remote shell program, but some environments
require that rsh be used instead. TotalView controls the remote shell used by MRNet using the TV::xplat_rsh
state variable or the -xplat_rsh TotalView command option to set this state variable. If this variable isn't explic-
itly set and the XPLAT_RSH environment variable is not set or is empty, TotalView uses the value of
TV::launch_command when instantiating an MRNet tree.

On Cray XT, XE, and XK systems, MRNet uses the ALPS Tool Helper library to instantiate the tree, which does not
require the use of a separate remote shell program.

Tips on Using ssh/rsh with MRNet

The use of rsh / ssh differs in every system environment, therefore you should consult your system's documen-
tation to know whether rsh or ssh should be used for your system. The rsh and ssh man pages are also a
useful resource. Regardless, we offer the following tips as a guideline for how to configure rsh and ssh:

 Configure rsh or ssh to allow accessing the remote nodes without a password. rsh typically uses
a file named $HOME/.rhosts (see man 5 rhost on a Linux system). ssh typically uses a pair of
private/public keys stored in files under your $HOME/.ssh directory (see man 1 ssh on a Linux
system).

 Disable X11 forwarding in ssh in your $HOME/.ssh/config file (see man 5 ssh_config on a
Linux system).

 Set StrictHostKeyChecking to no in ssh in your $HOME/.ssh/config file (see man 5
ssh_config on a Linux system). If the ssh host keys change for a remote host, you may need to
delete the lines for the host from the $HOME/.ssh/known_hosts file, or remove the file.

Using MRNet on Cray Computers

The following sections describe the options and state variables that control the configuration and use of MRNet
on Cray. Please refer to the TotalView Reference Guide for a general description of how options and state variables
can be used with TotalView.

For more information on Cray, see Debugging Cray XT/XE/XK/XC Applications on page 540.

Is Cray XT Flag

State variable: TV::is_cray_xt boolean

MRNet Using MRNet with TotalView 386

Scalability in HPC Computing Environments

Default value: Set to true if TotalView is running on Linux-x86_64 or Linux-ARM64 (aarch64) and /proc/
cray_xt/nid exists; otherwise, set to false.

Note that some Cray front-end (elogin) nodes do not have a /proc/cray_xt/nid file, in which case a job must
be submitted to start TotalView on a Cray XT/XE/XK/XC node, or tvconnect must be used in your batch job. (For
detail on tvconnect, see Reverse Connections on page 491.)

Is Cray CTI Flag

State variable: TV::is_cray_cti boolean

Default value: Set to true if TotalView is running on Linux-x86_64 or Linux-ARM64 (aarch64) and /opt/cray/
pe/cti/ exists; otherwise, set to false. TotalView uses the CTI (Cray Tools Interface) library to deploy debugger
processes on the node where your application is running.

Cray XT MRNet Server Launch String

Option: –cray_xt_mrnet_server_launch_string string

State variable: TV::cray_xt_mrnet_server_launch_string string

Default value: /var/spool/alps/%A/toolhelper%A/tvdsvr%K \

-working_directory %D -set_pw %P -verbosity %V %F

Analogous to the standard MRNet server launch string, the Cray XT MRNet server launch string is used when
MRNet launches the TotalView debugger servers on Cray when using the ATH (ALPS Tool Helper) library. TotalView
expands the launch string using the normal launch string expansion rules.

Cray XT MRNet Transfer File List

Option: –cray_xt_mrnet_xfer_file_list stringlist

State variable: TV::cray_xt_mrnet_xfer_file_list stringlist

Default value:

The default value is calculated at TotalView startup time, as follows. The following is used as a "base" list of files
needed by TotalView on the Cray compute nodes when MRNet and the Cray ATH libraries are in use.
TVROOT/bin/mrnet_commnode_main_cray_xt
TVROOT/bin/tvdsvr_mrnet
TVROOT/bin/tvdsvrmain_mrnet
TVROOT/shlib/mpa/obj_cray_xt/libmpattr.so.1
TVROOT/shlib/unwind/obj/libunwind-*.so.8
TVROOT/shlib/mrnet/obj_cray_xt/libmrnet.so
TVROOT/shlib/mrnet/obj_cray_xt/libxplat.so
TVROOT/shlib/mrnet/obj_cray_xt/libservertree_filters.so.1

MRNet Using MRNet with TotalView 387

Scalability in HPC Computing Environments

TVROOT/shlib/mrnet/obj_cray_xt/libtvwrapalps.so.1
/lib64/libthread_db.so.1
Note that the name of the "libunwind-*.so.8" library depends on the platform, and will be either "libunwind-
x86_64.so.8" for x86_64 or "libunwind-aarch64.so.8" for ARM64.

On the x86_64 platform, TotalView also stages the libraries required to support ReplayEngine, which include:
/usr/bin/ld
/usr/bin/objcopy
TVROOT/lib/libundodb_debugger_x64.so
TVROOT/lib/undodb_a_x64.o
TVROOT/lib/undodb_infiniband_preload_x64.so
TVROOT/lib/undodb_a_x32.o
TVROOT/lib/undodb_infiniband_preload_x32.so
The above list is then passed to the shell script named "cray_sysdso_deps.sh" to calculate the system shared
libraries needed by the executables and shared libraries on the base list. The actual list of system libraries can
vary from system to system, but typically consists of the following files:

/lib64/libgcc_s.so.1
/usr/lib64/libbfd-<version>.so
/usr/lib64/libstdc++.so.6
The version of libbfd, which is needed by ld and objcopy, varies from system to system.

The default value is a space-separated string-list of file names that are transferred (staged) to the compute
nodes. These files are the shell script, executable and shared library files required to run the MRNet commnode
and TotalView debugger server processes on the compute nodes. When instantiating the MRNet tree on Cray, the
ALPS Tool Helper library is used to broadcast these files into the compute nodes' ramdisk under the /var/
spool/alps/apid directory. TVROOT is the path to the platform-specific files in the TotalView installation.

Note that most up-to-date Cray systems support the debugger using the Cray Tools Interface (CTI) library, how-
ever TotalView attempts to support older legacy Cray systems that do not have CTI available by using the ALPS
Tool Helper (ATH) library.

Cray CTI MRNet Transfer File List

Option: –cray_cti_mrnet_xfer_file_list stringlist

State variable: TV::cray_cti_mrnet_xfer_file_list stringlist

Default value:

The default value is calculated at TotalView startup time, as follows. The following is used the “base” list of files
needed by TotalView on the Cray compute nodes when MRNet and the Cray CTI libraries are in use.
TVROOT/bin/mrnet_commnode_main_cray_cti
TVROOT/bin/tvdsvrmain_mrnet
TVROOT/shlib/mpa/obj_cray_xt/libmpattr.so.1
TVROOT/shlib/unwind/obj/libunwind-*.so.8
TVROOT/shlib/mrnet/obj_cray_cti/libmrnet.so

MRNet Using MRNet with TotalView 388

Scalability in HPC Computing Environments

TVROOT/shlib/mrnet/obj_cray_cti/libxplat.so
TVROOT/shlib/mrnet/obj_cray_cti/libservertree_filters.so.1
TVROOT/shlib/mrnet/obj_cray_cti/libtvwrapcti.so.1
/lib64/libthread_db.so.1
Note that the name of the "libunwind-*.so.8" library depends on the platform, and will be either "libunwind-
x86_64.so.8" for x86_64 or "libunwind-aarch64.so.8" for ARM64.

On the x86_64 platform, TotalView also stages the libraries required to support ReplayEngine, which include:
/usr/bin/ld
/usr/bin/objcopy
TVROOT/lib/libundodb_debugger_x64.so
TVROOT/lib/undodb_a_x64.o
TVROOT/lib/undodb_infiniband_preload_x64.so
Note that CTI does not support staging 32-bit ELF files, therefore they are not included in the above list. Shared
library dependencies are calculated by CTI itself, therefore CTI takes care of staging any additional required
shared library dependencies.

 389

PART IV Accessing TotalView
Remotely

Remotely debug your programs:

 TotalView Remote Display on page 397

Use the TotalView Remote Display client to run TotalView on another system.

 TotalView Remote Connections on page 390

Use your TotalView UI to directly connect to another server running TotalView. This option allows you to
seamlessly run remote debugging sessions without requiring an external client, and provides you access
to all of TotalView’s debugging tools as if you were running TotalView on a local machine.

390

TotalView Remote Connections

From the TotalView UI running on your machine, set up a remote session on another server running
TotalView. This feature does not require the installation and use of a separate client; rather, it is a built-in fea-
ture of the regular TotalView. This allows you to debug programs using the TotalView UI on your machine, with
access to all the tools available within a regular TotalView debugging session.

 About Remote Connections on page 391

 Configuring a Remote Connection on page 392

 Debugging on a Remote Connection on page 395

About Remote Connections 391

TotalView Remote Connections

About Remote Connections
The ability to set up a remote connection is available in theTotalView UI on all supported platforms. Setting up a
remote connection requires simply that TotalView be running on the local machine, installed on the remote
machine, and that you enter any required connection and authorization information.

Before establishing a remote connection:

 Ensure that your environment for running TotalView is set up properly on the remote server.

 Ensure that the version of TotalView running on both the remote and local server is the same.

NOTE: The version of TotalView running on the local and remote server must be the same.

Once the remote connection is established, you can debug programs on the remote server in the same way you
work on your local machine, with all the tools available to you.

The remote connection feature is available from the Start Page before you open a debug session.

It is turned off by default. To set up or open a remote connection, select the Configure icon under Launch
Remote Debugger, to launch the Remote Connections preferences page.

Configuring a Remote Connection 392

TotalView Remote Connections

Configuring a Remote Connection
Configure remote connections on the Remote Connection Settings preferences page, launched when you select
the Configure icon on the Start Page.

Figure 121, Remote Connection Preferences page

Existing configurations display in the “Select a configuration to edit” dropdown.To create a new connection, select
create a new configuration. Enter the required information:

Configuring a Remote Connection 393

TotalView Remote Connections

 Connection Name

A descriptive name for this connection.

 Remote Host(s)

The user and remote host to connect to, either a network path or an IP address. If your network has a gate-
way machine, use a comma-delineated string to include intermediate hosts. For example:

user@myServer.myNetwork.com, user@anotherServer.myNetwork.com
You can enter multiple hosts, but only the first two support entering a password; you’ll need to access a third
or subsequent host without a password.

NOTE: If you’re using some customized settings, including an alias for your host name
or a non-standard port for your SSH daemon, add this information to your local
SSH configuration file.

 Private Key File

Provide an optional Private Key File used as part of the SSH connection to connect to your remote system.

 TotalView Remote Installation Directory

The directory on the remote host where TotalView is installed. Identify the installation’s top-level directory,
for example, /opt/totalview.2020.

 Remote Command(s)

Optional shell commands to execute before TotalView is run on the remote server. Shell commands must
follow the syntax of your SSH login shell. Some examples:

 Add TotalView to your path. This avoids having to specify the TotalView remote installation
directory:

csh: setenv PATH /opt/toolworks/totalview.2021.1/bin:$PATH
bash: export PATH=/opt/toolworks/totalview.2021.1/bin:$PATH

 Load the TotalView module and openmpi module if they are configured for your system.
This also avoids having to specify the TotalView remote installation directory:

csh or bash: module load totalview ; module load openmpi

 Source a script to set your environment:

csh or bash: source /path/to/my/script

Configuring a Remote Connection 394

TotalView Remote Connections

Once configured, click OK. You are returned to the Start Page where your figured connections will now be avail-
able in the Remote Connections dropdown:

To Modify or Delete a Connection

To edit a configuration, select it in the “Select a configuration to edit” dropdown box, make your changes, then
select OK.

To delete a configuration, select Delete Configuration.

Debugging on a Remote Connection 395

TotalView Remote Connections

Debugging on a Remote Connection

NOTE: If you need to enter a password to connect to a remote server, you must start TotalView from
a shell.

From the Start Page, select your remote connection from the Remote Connections dropdown. A popup launches:

NOTE: The version of TotalView on both the local and remote servers must be the same. If not,
TotalView will fail to connect.

If the remote host requires a password, the dialog prompts you to enter it in the shell from which you launched
TotalView.

Running a remote connection will end your existing session; any local variables or open files will close.

If you are in the middle of an active session with files open, TotalView prompts you to ensure your choice.

NOTE: Opening a remote connection will close your existing session.

Debugging on a Remote Connection 396

TotalView Remote Connections

The remote session opens. Choose an existing session or create a new session. To create a new session, you will
need to manually enter the filename and path under the File Name field.

NOTE: Manually enter the filename and path to the program you plan to debug. Browsing on the
remote server via the UI is not yet supported.

Debug a program in the same way you would if you were running TotalView on your local machine. All debugging
tools are available to you.

Identifying a Remote Debugging Session

When on a remote connection, two visual cues identify that this is a remote session:

 The title bar displays the server’s name.

 The status bar displays the descriptive name for your remote connection configuration.

For example, the debugging session below was initiated on ubuntu1404-x8664, and is running TotalView on the
server iwashi.totalviewtech.com, based on a connection named “Iwashi:”

397

TotalView Remote Display

Using the TotalView Remote Display client, you can start and then view TotalView as it executes on another
system, so that TotalView need not be installed on your local machine.

 Remote Display Supported Platforms on page 398

 Remote Display Components on page 399

 Installing the Client on page 400

 Client Session Basics on page 402

 Advanced Options on page 406

 Naming Intermediate Hosts on page 408

 Submitting a Job to a Batch Queuing System on page 409

 Setting Up Your Systems and Security on page 411

 Session Profile Management on page 412

 Batch Scripts on page 414

Remote Display Supported Platforms 398

TotalView Remote Display

Remote Display Supported Platforms
Remote Display is currently bundled into all TotalView releases.

Supported platforms include:

 Linux x86-64

 Microsoft Windows

 Apple macOS Intel

No license is needed to run the Client, but TotalView running on any supported operating system must be a
licensed version of TotalView 8.6 or greater.

Remote Display Components 399

TotalView Remote Display

Remote Display Components
TotalView Remote Display has three components:

 The Client is a window running on a Remote Display supported platform (See Remote Display
Supported Platforms on page 398).

 The Server is invisible, managing the movement of information between the Viewer, the remote
host, and the Client. The Server can run on all systems that TotalView supports. For example, you
can run the Client on a Windows system and set up a Viewer environment on an IBM RS/6000
machine.

 The Viewer is a window that appears on the Client system. All interactions between this window
and the system running TotalView are handled by the Server.

Figure 122 shows how these components interact.

In this figure, the two large boxes represent the computer upon which you execute the Client and the remote
system upon which TotalView runs. Notice where the Client, Viewer, and Server are located. The small box labeled
External SSH Host is the gateway machine inside your network. The Client may be either inside our outside your
firewall. This figure also shows that the Server is created by TotalView or MemoryScape as it is contained within
these programs and is created after the Client sends a message to TotalView or MemoryScape.

TotalView and the X Window system must be installed on the remote server machine containing the rgb and font
files in order for the remote display server to start correctly. The bastion nodes (if any) between the remote client
machine and remote server machine do not require TotalView or X Window file access.

Figure 122, Remote Display Components

Installing the Client Installing on Linux 400

TotalView Remote Display

Installing the Client
The files used to install the client are in these locations:

 Remote Display Client files for each supported platform are in the remote_display subdirectory in
your TotalView installation directory.

 Alternatively, request a Remote Display Client from TotalView’s download page at https://
totalview.io/downloads.

Because Remote Display is built into TotalView, you don’t need a separate license for it. Remote Display works
with your product’s license. If you have received an evaluation license, you can use Remote Display on another
system.

Installing on Linux
The Linux Client installer is RDC_installer_<release_number>-linux-x86-64.run.

Linux Requirements:

 The xterm application must be installed on both the RDC client and RDC server host.

 The RDC server host must have a window manager installed. The RDC looks for icewm, fvwm,
twm and mwm. You can override the window manager in use by providing the executable name of
your window manager on the RDC's Advanced Options dialog.

Installing on Microsoft Windows

The Windows Client installer is RDC_Installer.<release_number>-win.exe.

Windows Requirements:

 The xterm application must be installed on the RDC server host.

 The RDC server host must have a window manager installed. The RDC looks for icewm, fvwm,
twm and mwm. You can override the window manager in use by providing the executable name of
your window manager on the RDC's Advanced Options dialog.

https://totalview.io/downloads
https://totalview.io/downloads

Installing the Client Installing on macOS 401

TotalView Remote Display

Installing on macOS
The macOS installer is RDC_installer_<release_number>-macos.dmg.

macOS Requirements:

 The xterm application must be installed on both the RDC client and RDC server host.

 The RDC server host must have a window manager installed. The RDC looks for icewm, fvwm,
twm and mwm. You can override the window manager in use by providing the executable name of
your window manager on the RDC's Advanced Options dialog.

 Catalina (macOS 10.14) and newer users must install the free Real VNC viewer from https://
www.realvnc.com/en/connect/download/viewer/macos/.

https://www.realvnc.com/en/connect/download/viewer/macos/
https://www.realvnc.com/en/connect/download/viewer/macos/

Client Session Basics Installing on macOS 402

TotalView Remote Display

Client Session Basics
The TotalView Remote Display Client is simple to use. Just enter the required information, and the Client does the
rest.

On Linux, invoke the Client with the following:
remote_display_client.sh

On Windows, either click the desktop icon or use the TVT Remote Display item in the start menu to launch the
remote display dialog. On macOS, run the TVRemoteDisplayClient application from the Applications area.

The Client window displays similarly on Linux, Windows, or macOS.

Here are the basic steps:

1. Enter the Remote Host

 Remote Host: The name of the machine upon which TotalView will execute. While the Client
can execute only on specified systems (see Remote Display Supported Platforms), the
remote system can be any system upon which you are licensed to run TotalView.

Figure 123, Remote Display Client Window

Client Session Basics Installing on macOS 403

TotalView Remote Display

 User Name dropdown: Your user name, a public key file, or other ssh options.

2. (Optional) As needed, enter hosts in access order...(depending on your network).

If the Client system cannot directly access the remote host, specify the path. For more information, see Nam-
ing Intermediate Hosts on page 408.

3. Enter settings for the debug session on the Remote Host

Settings required to start TotalView on the remote host. (The TotalView and MemoryScape tabs are identical.)

 Path to TotalView on the Remote Host: The directory on the remote host in which
TotalView resides, using either an absolute or relative path. “Relative” means relative to your
home directory.

 (Optional) Your Executable: Either a complete or relative pathname to the program being
debugged. If you leave this empty, TotalView begins executing as if you had just typed
totalview on the remote host.

 Other options:

You can add any command-line options for TotalView or your program.

TotalView options are described in the “TotalView Debugger Command Syntax” chapter of the Classic
TotalView Reference Guide.

For arguments to your program, enter them in the same way as you would using the -a command-line
option.

Additional options include:

 Advanced Options: Press the Advanced Options button to customize client/server interaction and
server execution, Advanced Options on page 406.

 Submit job to batch queuing system: You can submit jobs to the PBS Pro and LoadLeveler batch
queuing systems, Submitting a Job to a Batch Queuing System on page 409.

Launching the Remote Session

Next, press the Launch Debug Session button, which launches a password dialog box.

Client Session Basics Installing on macOS 404

TotalView Remote Display

Depending on how you have connected, you may be prompted twice for your password: first when Remote Dis-
play is searching ports on a remote system and another when accessing the remote host. You can often simplify
logging in by using a public key file.

After entering the remote host password, a window opens on the local Client system containing TotalView as well
as an xterm running on the remote host where you can enter operating system and other commands. If you do
not add an executable name, TotalView displays its File > New Debugging Session dialog box. If you do enter a
name, TotalView displays its Process > Startup Parameters dialog box.

Closing the Remote Session

To close the session:

 From the Client, terminate the Viewer and Server by pressing the End Debug Session button. (The
Launch Debug Session button changes to this button after you launch the session.)

 Click Close on the Viewer’s window to remove the Viewer Window. This does not end the
debugging session, so then select the Client’s End Debug Session button. Using these two steps to
end the session may be useful when many windows are running on your desktop, and the Viewer
has obscured the Client.

Closing all Remote Sessions and the Client

To close all remote connections and shut down the Client window, select File > Exit.

Figure 124, Asking for Password

Client Session Basics Working on the Remote Host 405

TotalView Remote Display

Working on the Remote Host
After launching a remote session, the Client starts the Remote Display Server on the remote host where it creates
a virtual window. The Server then sends the virtual window to the Viewer window running on your system. The
Viewer is just another window running on the Client’s system. You can interact with the Viewer window in the
same way you interact with any window that runs directly on your system.

Behind the scenes, your interactions are sent to the Server, and the Server interacts with the virtual window run-
ning on the remote host. Changes made by this interaction are sent to the Viewer on your system. Performance
depends on the load on the remote host and network latency.

If you are running the Client on a Windows system, these are the icons available:

From left to right, the commands associated with these icons are:

 Connection options

 Connection information

 Full Screen - this does not change the size of the Viewer window

 Request screen refresh

 Send Ctrl-Alt-Del

 Send Ctrl-Esc

 Send Ctrl key press and release

 Send Alt key press and release

 Disconnect

Figure 125, Remote Display Client commands on Windows

Advanced Options Working on the Remote Host 406

TotalView Remote Display

Advanced Options
The Advanced Options window in Figure 126 is used to customize Remote Display Client and Server interaction
and to direct the Server and Remote Display Viewer execution.

Options are:

 Commands: Enter commands to execute before TotalView begins. For example, you can set an
environment variable or change a directory location.

Figure 126, Advanced Options Window

Advanced Options Working on the Remote Host 407

TotalView Remote Display

 Font Path: Specify the remote host’s font path, needed by the Remote Display Server. Remote
Display checks the obvious places for the font path, but on some architectures, the paths are not
obvious.

 Color Location: Specify the location of the rgb.txt file needed by the Remote Display Server.
Remote Display checks the obvious places for the location, but on some architectures, its location
is not obvious. Providing the correct location may improve the startup time.

 VNC Viewer: Select the VNC viewer to use for application display.

 Remote Display Viewer Window Size: The default size of the Remote Display Viewer is
dynamically computed, taking into account the size of the device on which the Remote Display
Client is running. You can override this by selecting a custom size, which will be saved with the
profile.

 Display Number: Specify a display number for Remote Display to use when the Client and Server
connect. The Remote Display Client determines a free display number when connecting to the
Server, requiring two password entries in some instances. Specifying the display number overrides
the Remote Display Client determining a free number, and collisions may occur.

 ssh Port Number: On most systems, ssh uses port 22 when connecting, but in rare instances
another port is used. This field allows you to override the default.

 Window Manager: Specify the name of the window manager. The path of the window manager
you provide must be named in your PATH environment variable. The Server looks for (in order) the
following window managers on the remote host: icewm, fvwm, twm, and mwm. Specifying a
window manager may improve the startup time.

The buttons at the bottom are:

 Cancel: Closes the window without saving changes.

 Apply: Saves the changes with the profile, leaving the window open.

 OK: Closes the window and saves the changes with the profile.

 Reset: Reverts back to the previously saved values.

Naming Intermediate Hosts Working on the Remote Host 408

TotalView Remote Display

Naming Intermediate Hosts
If the Client system does not have direct access to the remote host, you must specify the path, or paths, along
with how you will access the host. You can enter multiple hosts; the order in which you enter them determines

the order Remote Display uses to reach your remote host. Use the arrow buttons on the left () to change the
order.

 Host: The route the Client should take to access the remote host. For instance, this can be a
network path or an IP address. If your network has a gateway machine, you would name it here in
addition to other systems in the path to the remote host.

 Access By/Access Value: The most common access method is by a user name, the default. If this is
incorrect for your environment, use the dropdown menu to select the correct method:

 User Name, i.e. the name you enter into a shell command such as ssh to log in to the host
machine. Enter this in the Access Value field.

 Public Key File, the file that contains access information, entered into the Access Value field.

 Other SSH Options, the ssh arguments needed to access the intermediate host. These are
the same arguments you normally add to the ssh command.

 Commands: Commands (in a comma-separated list) to execute when connected to the remote
host, before connecting to the next host.

Figure 127, Access By Options

Submitting a Job to a Batch Queuing System Working on the Remote Host 409

TotalView Remote Display

Submitting a Job to a Batch Queuing System
TotalView Remote Display can submit jobs to the PBS Pro and LoadLeveler batch queuing systems.

1. Select a batch system from the Submit job to Batch Queuing System dropdown list, either PBS Pro or
LoadLeveler.

The default values are qsub for PBS Pro and llsubmit for LoadLeveler.

The Script to Run field is populated with the default scripts for either system: tv_PBS.csh for PBS Pro and
tv_LoadLeveler.csh for LoadLeveler. These scripts were installed with TotalView, but can of course be
changed if your system requires it. For more information, see Batch Scripts on page 414.

2. (Optional) Select additional PBS or LoadLeveler options in the Additional Options field.

Any other required command-line options to either PBS or LoadLeveler. Options entered override those in
the batch script.

3. Launch by pressing the Launch Debug Session button.

Figure 128, Remote Display Window: Showing Batch Options

Submitting a Job to a Batch Queuing System Working on the Remote Host 410

TotalView Remote Display

Behind the scenes, a job is submitted that will launch the Server and the Viewer when it reaches the head
of the batch queue.

Setting Up Your Systems and Security Working on the Remote Host 411

TotalView Remote Display

Setting Up Your Systems and Security
In order to maintain a secure environment, Remote Display uses SSH. The Remote Display Server, which runs on
the remote host, allows only RFB (Remote Frame Buffer) connections from and to the remote host. No incoming
access to the Server is allowed, and the Server can connect back to the Viewer only over an established SSH con-
nection. In addition, only one Viewer connection is allowed to the Server.

As Remote Display connects to systems, a password is required. If you are allowed to use keyless ssh, you can
simplify the connection process. Check with your system administrator to confirm that this kind of connection is
allowed and the ssh documentation for how to generate and store key information.

Requirements for the Client to connect to the remote host:

 Install TotalView on any remote systems where TotalView will be run to debug programs.

 If you use an LM_LICENSE_FILE environment variable to identify where your license is located,
ensure that this variable is read in on the remote host. This is performed automatically if the
variable’s definition is contained within one of the files read by the shell when Remote Display logs
in.

 ssh must be available on all non-Windows systems being accessed.

 X Windows must be available on the remote system.

Session Profile Management Working on the Remote Host 412

TotalView Remote Display

Session Profile Management
The Client saves your information into a profile based on the name entered in the remote host area. You can
restore these settings by clicking on the profile’s name in the Session Profiles area.

Figure 129 shows two saved profiles.

When you select a profile, the Client populates the right window with that profile’s values.

If you edit the data in a text field, the Client automatically updates the profile information. If this is not what you
want, click the Create icon to display a dialog box into which you can enter a new session profile name. The Client
writes this existing data into a new profile instead of saving it to the original profile.

Saving a Profile

To save a profile, click the save button () or select File > Profile > Save, then provide a profile name in the Pro-
file Name popup.

This command saves the profile information currently displayed in the Client window to a name you provide, plac-
ing it in the Session Profiles area. You do not need to save changes to the current profile as the Client
automatically saves them.

Figure 129, Session Profiles

Session Profile Management Working on the Remote Host 413

TotalView Remote Display

Deleting a Profile

To delete a profile, click the delete button () or select File > Profile > Delete. This command deletes the cur-
rently selected profile and requires a confirmation.

Sharing Profiles

To import a profile, click the import button () or select File > Profile > Import, and then browse to the profile
to import. After you import a file, it remains in your Client profile until you delete it.

To export a profile, click the export button () or select File > Profile > Export, browse to a directory where
you want to export it, and then name the profile.

Batch Scripts tv_PBS.csh Script 414

TotalView Remote Display

Batch Scripts
The actions that occur when you select PBS Pro or LoadLeveler within the Submit job to Batch Queueing Sys-
tem are defined in two files: tv_PBS.csh and tv_LoadLever.csh. If the actions defined in these scripts are not
correct for your environment, you can either change one of these scripts or add a new script, which is the recom-
mended procedure.

Place the script you create into installation_dir/totalview_version/batch. For example, you could place a new
script file called Run_Large.csh into the installation_dir/toolworks/totalview.2020.0/batch directory.

tv_PBS.csh Script
Here are the contents of the tv_PBS.csh script file:
#!/bin/csh -f

Script to submit using PBS

These are passed to batch scheduler::

account to be charged
##PBS -A VEN012

pass users environment to the job
##PBS -V

name of the job
#PBS -N TotalView

input and output are combined to standard
##PBS -o PBSPro_out.txt
##PBS -e PBSPro_err.txt

##PBS -l feature=xt3

#PBS -l walltime=1:00:00,nodes=2:ppn=1

Do not remove the following:
TV_COMMAND
exit
#
end of execution script

You can uncomment or change any line and add commands to this script. The only lines you cannot change are:
TV_COMMAND
exit

Batch Scripts tv_LoadLeveler.csh Script 415

TotalView Remote Display

tv_LoadLeveler.csh Script
Here are the contents of the tv_Loadleveler.csh script file:
#! /bin/csh -f
@ job_type = bluegene
#@ output = tv.out.$(jobid).$(stepid)
#@ error = tv.job.err.$(jobid).$(stepid)
#@ queue
TV_COMMAND

You can uncomment or change any line and add commands to this script. The only line you cannot change is:
TV_COMMAND

 416

PART V GPU Debugging

This part introduces the TotalView CUDA and AMD debuggers for debugging GPUs.

About GPU Debugging

The TotalView CUDA Debugger

 NVIDIA CUDA Debugging Overview on page 419

Introduces the CUDA debugger, including features, requirements, installation and drivers.

 CUDA Debugging Model and Unified Display on page 421

Explores setting and viewing action points in CUDA code.

 CUDA Debugging Tutorial on page 425

Discusses how to build and debug a simple CUDA program, including compiling, controlling execution,
and analyzing data.

 CUDA Problems and Limitations on page 454

Issues related to limitations in the NVIDIA environment.

 Sample CUDA Program on page 457

Compilable sample CUDA program.

The TotalView AMD Debugger

 AMD ROCm Debugging Overview on page 462

Introduces the AMD ROCm debugger, including features, requirements, installation, and drivers.

 417

 AMD ROCm Debugging Model and Unified Display on page 463

Explores setting and viewing action points in HIP code.

 AMD ROCm Debugging Tutorial on page 468

Discusses how to build and debug a simple HIP program, including compiling, controlling execution, and
analyzing data.

 AMD ROCm Problems and Limitations on page 478

Issues related to limitations in the AMD ROCm environment.

 Sample HIP Program on page 481

Compilable sample HIP program.

418

 Debugging CUDA Programs

 NVIDIA CUDA Debugging Overview

 Installing the CUDA SDK Tool Chain on page 419

 Directive-Based Accelerator Programming Languages on page 420

 CUDA Debugging Model and Unified Display

 The TotalView CUDA Debugging Model

 Pending and Sliding Breakpoints

 Unified Source View and Breakpoint Display

 CUDA Debugging Tutorial

 Compiling for Debugging

 Starting a TotalView CUDA Session

 Controlling Execution

 Displaying CUDA Program Elements

 GPU Core Dump Support

 GPU Error Reporting

 Displaying Device Information

 CUDA Problems and Limitations

 Hangs or Initialization Failures

 CUDA and ReplayEngine

 Sample CUDA Program

NVIDIA CUDA Debugging Overview Installing the CUDA SDK Tool Chain 419

Debugging CUDA Programs

NVIDIA CUDA Debugging Overview
The TotalView CUDA debugger is an integrated debugging tool capable of simultaneously debugging CUDA code
that is running on the host system and the NVIDIA® GPU. CUDA support is an extension to the standard version
TotalView, and is capable of debugging 64-bit CUDA programs. Debugging 32-bit CUDA programs is currently not
supported.

Supported major features:

 Debug CUDA application running directly on GPU hardware

 Set breakpoints, pause execution, and single step in GPU code

 View GPU variables in PTX registers, local, parameter, global, or shared memory

 Access runtime variables, such as threadIdx, blockIdx, blockDim, etc.

 Debug multiple GPU devices per process

 Support for the CUDA MemoryChecker

 Debug remote, distributed and clustered systems

 Support for directive-based programming languages

 Support for host debugging features

Requirements:

The CUDA SDK and a host distribution supported by NVIDIA. For SDK versions and supported NVIDIA GPUs, see
the TotalView Supported Platforms Guide.

Installing the CUDA SDK Tool Chain
Before you can debug a CUDA program, you must download and install the CUDA SDK software from NVIDIA
using the following steps:

 Visit the NVIDIA CUDA Zone download page:

https://developer.nvidia.com/cuda-downloads

 Select Linux as your operating system

 Download and install the CUDA SDK Toolkit for your Linux distribution (64-bit)

https://developer.nvidia.com/cuda-downloads

NVIDIA CUDA Debugging Overview Directive-Based Accelerator Programming Languages 420

Debugging CUDA Programs

By default, the CUDA SDK Toolkit is installed under /usr/local/cuda/. The nvcc compiler driver is installed in /
usr/local/cuda/bin, and the CUDA 64-bit runtime libraries are installed in /usr/local/cuda/lib64.

You may wish to:

 Add /usr/local/cuda/bin to your PATH environment variable.

 Add /usr/local/cuda/lib64 to your LD_LIBRARY_PATH environment variable.

Directive-Based Accelerator Programming Languages
Converting C or Fortran code into CUDA code can take some time and effort. To simplify this process, a number
of directive-based accelerator programming languages have emerged. These languages work by placing compiler
directives in the user’s code. Instead of writing CUDA code, the user can write standard C or Fortran code, and
the compiler converts it to CUDA at compile time.

TotalView currently supports Cray’s OpenMP Accelerator Directives and Cray’s OpenACC Directives. TotalView
uses the normal CUDA Debugging Model when debugging programs that have been compiled using these
directives.

CUDA Debugging Model and Unified Display The TotalView CUDA Debugging Model 421

Debugging CUDA Programs

 CUDA Debugging Model and Unified
Display

 The TotalView CUDA Debugging Model on page 421

 Pending and Sliding Breakpoints on page 423

 Unified Source View and Breakpoint Display on page 423

Debugging CUDA programs presents some challenges when it comes to setting action points. When the host pro-
cess starts, the CUDA threads don’t yet exist and so are not visible to the debugger for setting breakpoints. (This
is also true of any libraries that are dynamically loaded using dlopen and against which the code was not origi-
nally linked.)

To address this issue, TotalView allows setting a breakpoint on any line in the Source view, whether or not it can
identify executable code for that line. The breakpoint becomes either a pending breakpoint or a sliding breakpoint
until the CUDA code is loaded at runtime.

The Source view provides a unified display that includes line number symbols and breakpoints that span the host
executable, host shared libraries, and the CUDA ELF images loaded into the CUDA threads. This design allows you
to easily set breakpoints and view line number information for the host and GPU code at the same time. This is
made possible by the way CUDA threads are grouped, discussed in the section The TotalView CUDA Debugging
Model on page 421.

The TotalView CUDA Debugging Model
The address space of the Linux CPU process and the address spaces of the CUDA threads are placed into the
same share group. Breakpoints are created and evaluated within the share group, and apply to all of the image
files (executable, shared libraries, and CUDA ELF images) in the share group.

That means that a breakpoint can apply to both the CPU and GPU code. This allows setting breakpoints on
source lines in the host code that are then planted in the CUDA images at the same location once the CUDA ker-
nel starts.

Consider a Linux process consisting of two Linux pthreads and two CUDA threads. (A CUDA thread is a CUDA
context loaded onto a GPU device.) Figure 130 illustrates how TotalView would group the Linux and CUDA
threads.

CUDA Debugging Model and Unified Display The TotalView CUDA Debugging Model 422

Debugging CUDA Programs

The Linux host CUDA process

A Linux host CUDA process consists of:

 A Linux process address space, containing a Linux executable and a list of Linux shared libraries.

 A collection of Linux threads, where a Linux thread:

 Is assigned a positive debugger thread ID.

 Shares the Linux process address space with other Linux threads.

 A collection of CUDA threads, where a CUDA thread:

 Is assigned a negative debugger thread ID.

 Has its own address space, separate from the Linux process address space, and separate
from the address spaces of other CUDA threads.

 Has a "GPU focus thread", which is focused on a specific hardware thread (also known as a
core or "lane" in CUDA lingo).

The above TotalView CUDA debugging model is reflected in the TotalView user interface and command line inter-
face. In addition, CUDA-specific CLI commands allow you to inspect CUDA threads, change the focus, and display
their status. See the dcuda entry in the TotalView Reference Guide for more information.

Figure 130, TotalView CUDA debugging model

CUDA Debugging Model and Unified Display Pending and Sliding Breakpoints 423

Debugging CUDA Programs

Pending and Sliding Breakpoints
Because CUDA threads and the host process are all in the same share group, you can create pending or sliding
breakpoints on source lines and functions in the GPU code before the code is loaded onto the GPU. If TotalView
can’t locate code associated with a particular line in the source view, you can still plant a breakpoint there, if you
know that there will be code there once the CUDA kernel loads.

Pending and sliding breakpoints are not specific to CUDA and are discussed in more detail in Setting Source-
Level Breakpoints on page 85.

Unified Source View and Breakpoint Display
Because CUDA threads are in the same share group as are their host Linux processes, the Source view can visibly
display a unified view of lines and breakpoints set in both the host code and the CUDA code. TotalView deter-
mines the equivalence of host and CUDA source files by comparing the base name and directory path of each file
in the share group; if they are equal, the line number information is unified in the Source view.

A unified display is not specific to CUDA but is particularly suited to debugging CUDA programs. It is discussed in
more detail in The Source View on page 7.

This is particularly visible when breakpoints are set. For example, Figure 131 shows source code before the CUDA
thread has launched. A breakpoint has been set at line 130 which slid to line 134 in the host code.

RELATED TOPICS
Sliding breakpoints Sliding Breakpoints on page 87

Pending breakpoints Pending Breakpoints on page 89

Pending evalpoints Creating a Pending Evalpoint on page 100

How the unified Source view displays break-
points in dynamically-loaded code

Unified Source View and Breakpoint Display on page 423

Using dactions to display pending and mixed
breakpoint detail before and after CUDA code
has loaded.

“Examples of Actions Points in Both Host and Dynamically
Loaded Code” in the dactions entry in the TotalView Reference
Guide

CUDA Debugging Model and Unified Display Unified Source View and Breakpoint Display 424

Debugging CUDA Programs

After CUDA kernel launch, Figure 132 shows that TotalView has read the line number information for the CUDA
image and the slid breakpoint now displays according to the full breakpoint expression in the Action Points tab.

Notice also that the source-line breakpoints for the CUDA code have been unified with the CPU code. For exam-
ple, lines 132 and 133 appeared with no bold before runtime, but after the CUDA threads have launched,
TotalView is able to identify line symbol information there, so the line numbers now appear bold.

Figure 131, Source view before CUDA kernel launch

Figure 132, Source view after CUDA kernel launch

RELATED TOPICS
More on the unified Source view display Unified Source View Display on page 8

The CUDA share group model The TotalView CUDA Debugging Model on
page 421

Using dactions to display pending and mixed breakpoint
detail before and after CUDA code has loaded.

“Examples of Actions Points in Both Host and
Dynamically Loaded Code” in the dactions entry in
the TotalView Reference Guide

CUDA Debugging Tutorial Unified Source View and Breakpoint Display 425

Debugging CUDA Programs

 CUDA Debugging Tutorial

 Compiling for Debugging on page 426

 Starting a TotalView CUDA Session on page 427

 Controlling Execution on page 428

 Displaying CUDA Program Elements on page 432

 The GPU Status View on page 439

 Enabling CUDA Memory Checker Feature on page 449

 GPU Core Dump Support on page 451

 GPU Error Reporting on page 451

Compiling for Debugging Unified Source View and Breakpoint Display 426

Debugging CUDA Programs

Compiling for Debugging
When compiling an NVIDIA CUDA program for debugging, it is necessary to pass the -g -G options to the nvcc
compiler driver. These options disable most compiler optimization and include symbolic debugging information
in the driver executable file, making it possible to debug the application. For example, to compile the sample
CUDA program named tx_cuda_matmul.cu for debugging, use the following commands to compile and execute
the application:
% /usr/local/bin/nvcc -g -G -c tx_cuda_matmul.cu -o tx_cuda_matmul.o
% /usr/local/bin/nvcc -g -G -Xlinker=-R/usr/local/cuda/lib64 \
tx_cuda_matmul.o -o tx_cuda_matmul
% ./tx_cuda_matmul
A:
[0][0] 0.000000
...output deleted for brevity...
[1][1] 131.000000
%

Access the source code for this CUDA program tx_cuda_matmul.cu program at Sample CUDA Program on
page 457.

Compiling for Fermi

To compile for Fermi, use the following compiler option:
-gencode arch=compute_20,code=sm_20

Compiling for Fermi and Tesla

To compile for both Fermi and Tesla GPUs, use the following compiler options:
-gencode arch=compute_20,code=sm_20 -gencode arch=compute_10,code=sm_10

See the NVIDIA documentation for complete instructions on compiling your CUDA code.

Compiling for Kepler

To compile for Kepler GPUs, use the following compiler options:
-gencode arch=compute_35,code=sm_35

See the NVIDIA documentation for complete instructions on compiling your CUDA code.

Compiling for Pascal

To compile for Pascal GPUs, use the following compiler options:
-gencode arch=compute_60,code=sm_60

Compiling for Debugging Starting a TotalView CUDA Session 427

Debugging CUDA Programs

See the NVIDIA documentation for complete instructions on compiling your CUDA code.

Compiling for Volta

To compile for Volta GPUs, use the following compiler options:
-gencode arch=compute_70,code=sm_70

See the NVIDIA documentation for complete instructions on compiling your CUDA code.

Starting a TotalView CUDA Session
A standard TotalView installation supports debugging CUDA applications running on both the host and GPU pro-
cessors. TotalView dynamically detects a CUDA install on your system. To start the TotalView GUI or CLI, provide
the name of your CUDA host executable to the totalview or totalviewcli command. For example, to start the
TotalView GUI on the sample program, use the following command:
% totalview tx_cuda_matmul

If TotalView successfully loads the CUDA debugging library, it prints to the log the current CUDA debugger API ver-
sion and the NVIDIA driver version:
CUDA library loaded: Current DLL API version is “8.0.128”; NVIDIA driver version
384.125
...

After reading the symbol table information for the CUDA host executable, TotalView opens the Source view
focused on main in the host code, as shown in Figure 133.

Compiling for Debugging Controlling Execution 428

Debugging CUDA Programs

Figure 133, Source view opened on CUDA host code

You can debug the CUDA host code using the normal TotalView commands and procedures.

Controlling Execution
Set breakpoints in CUDA code before you start the process. If you start the process without setting any break-
points, there are no prompts to set them afterward.

Note that breakpoints set in CUDA code will slide to the next host (CPU) line in the source file, but once the pro-
gram is running and the CUDA code is loaded, TotalView recalculates the breakpoint expression and plants a
breakpoint at the proper location in the CUDA code. (See Sliding Breakpoints on page 87.)

Viewing GPU Threads

Once the CUDA kernel starts executing, it will hit the breakpoint planted in the GPU code, as shown in Figure 134.

Compiling for Debugging Controlling Execution 429

Debugging CUDA Programs

Figure 134, CUDA thread stopped at a breakpoint, focused on GPU thread <<<(0,0,0),(0,0,0)>>>

The logical coordinates of the GPU focus threads are displayed in the GPU toolbar. You can use the GPU focus
thread selector to change the GPU focus thread. When you change the GPU focus thread, the logical coordinates
displayed also change, and the Call Stack and Source view are updated to reflect the state of the new GPU focus
thread.

The yellow PC highlighted line in the Source view shows the execution location of the GPU focus thread. The GPU
hardware threads, also known as "lanes," execute in parallel so multiple lanes may have the same PC value. The
lanes may be part of the same warp (up to 32 maximum threads that are scheduled concurrently), or in different
warps.

The Local Variables view shows the parameter, register and local variables for the function in the selected stack
frame. The variables for the selected GPU kernel code or inlined function expansion are shown.

The Call Stack shows the stack backtrace and inlined functions:

Compiling for Debugging Controlling Execution 430

Debugging CUDA Programs

Each stack frame in the stack backtrace represents either the PC location of GPU kernel code, or the expansion of
an inlined function. Inlined functions can be nested. The "return PC" of an inlined function is the address of the
first instruction following the inline expansion, which is normally within the function containing the inlined-func-
tion expansion.

CUDA Thread IDs and Coordinate Spaces

TotalView gives host threads a positive debugger thread ID and CUDA threads a negative thread ID. In this exam-
ple, the initial host thread in process "1" is labeled "1.1" and the CUDA thread is labeled "1.-1".

Figure 135, CUDA Thread IDs

In TotalView, a "CUDA thread" is a CUDA kernel invocation consisting of registers and memory, as well as a "GPU
focus thread".

Use the "GPU focus selector" on the GPU toolbar to change the physical coordinates of the GPU focus thread:

Figure 136, GPU Focus Selector on the GPU logical space toolbar

GPU Toolbars

Two GPU toolbars display the two coordinate spaces. One is the logical coordinate space that is in CUDA terms
grid and block indices: <<<(Bx,By,Bz),(Tx,Ty,Tz)>>>. The other is the physical coordinate space that is in hardware
terms the device number, streaming multiprocessor (SM) number on the device, warp (WP) number on the SM,
and lane (LN) number on the warp.

Compiling for Debugging Controlling Execution 431

Debugging CUDA Programs

Any given thread has both a thread index in this 4D physical coordinate space, and a different thread index in the
6D logical coordinate space. These indices are shown in the two GPU toolbars.

Figure 137, GPU logical and physical toolbars

To view a CUDA host thread, select a thread with a positive thread ID in the Process and Threads view. To view a
CUDA GPU thread, select a thread with a negative thread ID, then use the GPU thread selector on the logical tool-
bar to focus on a specific GPU thread. There is one GPU focus thread per CUDA thread, and changing the GPU
focus thread affects all windows displaying information for a CUDA thread and all command line interface com-
mands targeting a CUDA thread. In other words, changing the GPU focus thread can change data displayed for a
CUDA thread and affect other commands, such as single-stepping.

Note that in all cases, when you select a thread, TotalView automatically switches the Source pane, Call Stack,

Data View and Action Points view to match the selected thread.

Single-Stepping GPU Code

TotalView allows you to single-step GPU code just like normal host code, but note that a single-step operation
steps the entire warp associated with the GPU focus thread. So, when focused on a CUDA thread, a single-step
operation advances all of the GPU hardware threads in the same warp as the GPU focus thread.

To advance the execution of more than one warp, you may either:

 set a breakpoint and continue the process

 select a line number in the source pane and select "Run To".

Execution of more than one warp also happens when single-stepping a __syncthreads() thread barrier call. Any
source-level single-stepping operation runs all of the GPU hardware threads to the location following the thread
barrier call.

Single-stepping an inlined function (nested or not) in GPU code behaves the same as single-stepping a non-
inlined function. You can:

 step into an inlined function,

 step over an inlined function,

Compiling for Debugging Displaying CUDA Program Elements 432

Debugging CUDA Programs

 run to a location inside an inlined function,

 single-step within an inlined function, and

 return out of an inlined function.

Halting a Running Application

You can temporarily halt a running application at any time by selecting "Halt", which halts the host and CUDA
threads. This can be useful if you suspect the kernel might be hung or stuck in an infinite loop. You can resume
execution at any time by selecting "Go" or by selecting one of the single-stepping buttons.

Displaying CUDA Program Elements

GPU Assembler Display

Due to limitations imposed by NVIDIA, assembler display is not supported. All GPU instructions are currently dis-
played as 32-bit hexadecimal words.

GPU Variable and Data Display

TotalView can display variables and data from a CUDA thread.

Add an expression from the Call Stack to the Data View to display parameter, register, local, and shared variables,
as shown in Figure 138. The variables are contained within the lexical blocks in which they are defined. The type
of the variable determines its storage kind (register, or local, shared, constant or global memory). The address is a
PTX register name or an offset within the storage kind.

Figure 138, The Data View displaying a
parameter

Compiling for Debugging Displaying CUDA Program Elements 433

Debugging CUDA Programs

The identifier @local is a TotalView built-in type storage qualifier that tells the debugger the storage kind of "A" is
local storage. The debugger uses the storage qualifier to determine how to locate A in device memory. The sup-
ported type storage qualifiers are shown in Table 13.

Table 13: Supported Type Storage Qualifiers

Storage Qualifier Meaning

@code An offset within executable code storage

@constant An offset within constant storage

@generic An offset within generic storage

@frame An offset within frame storage

@global An offset within global storage

@local An offset within local storage

@parameter An offset within parameter storage

@iparam Input parameter

@oparam Output parameter

@shared An offset within shared storage

@surface An offset within surface storage

@texsampler An offset within texture sampler storage

@texture An offset within texture storage

@rtvar Built-in runtime variables (see CUDA Built-In Runtime
Variables)

@register A PTX register name (see PTX Registers)

Compiling for Debugging Displaying CUDA Program Elements 434

Debugging CUDA Programs

The type storage qualifier is a necessary part of the type for correct addressing in the debugger. When you edit a
type or a type cast, make sure that you specify the correct type storage qualifier for the address offset.

Managed Memory Variables

About Managed Memory

The CUDA Unified Memory component defines a managed memory space that allows all GPUs and hosts to “see
a single coherent memory image with a common address space,” as described in the NVIDIA documentation
“Unified Memory Programming.”

Allocating a variable in managed memory avoids explicit memory transfers between host and GPUs, as any allo-
cation created in the managed memory space is automatically migrated between the host and GPU.

A managed memory variable is marked with a "__managed__" memory space specifier.

How TotalView Displays Managed Variables

To make it easier to recognize and work with managed variables, TotalView annotates their address with the term
“Managed”, and, for statically allocated variables, adds the @managed_global type qualifier.

Statically Allocated Managed Variables

For example, consider this statically allocated managed variable, declared with the __managed__ keyword:

 __device__ __managed__ int mv_int_initialized=10;
TotalView decorates the type with @managed_global and adds “(Managed)” to its address. Here, note that the
managed variable is identified in these ways, while the regular global is not:

@sregister A PTX special register name (see PTX Registers)

@managed_global Statically allocated managed variable. See Managed Memory
Variables.

Table 13: Supported Type Storage Qualifiers

Storage Qualifier Meaning

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#um-unified-memory-programming-hd

Compiling for Debugging Displaying CUDA Program Elements 435

Debugging CUDA Programs

Dynamically Allocated Managed Variables

Managed memory can be dynamically allocated using the cudaMallocManaged() function, for example:

cudaMallocManaged((void**)&(elm->name), sizeof(char) * (strlen("hello") + 1));
Here, the Data View shows that the variable elem points into managed memory. That is, elem is a pointer and its
value points into managed memory; note that the pointer’s value is annotated with "(Managed)".

Note that one of its members, name, also points into managed memory.

CUDA Built-In Runtime Variables

TotalView allows access to the CUDA built-in runtime variables, which are handled by TotalView like any other vari-
ables, except that you cannot change their values.

The supported CUDA built-in runtime variables are as follows:

 struct dim3_16 threadIdx;

 struct dim3_16 blockIdx;

 struct dim3_16 blockDim;

 struct dim3_16 gridDim;

 int warpSize;

The types of the built-in variables are defined as follows:

 struct dim3_16 { unsigned short x, y, z; };

 struct dim2_16 { unsigned short x, y; };

You can dive on the name of a runtime variable in the Data View, which creates a new expression. Built-in vari-
ables can also be used in the TotalView expression system.

Compiling for Debugging Displaying CUDA Program Elements 436

Debugging CUDA Programs

Type Casting

The Data View allows you to edit the types of variables. This is useful for viewing an address as a different type.
For example, Figure 139 shows the result of casting a float in generic storage to a 2x2 array of floats in generic
storage.

Figure 139, Casting to a 2x2 array of float in local storage

You can determine the storage kind of a variable by diving on the variable to create a new expression in the Data
View in the graphical user interface (GUI), or by using the dwhat command in the command line interface (CLI).

Using the CLI to Cast

Here are some examples of using the CLI to determine variable types and to perform type casts.

When you are using the CLI and want to operate on a CUDA thread, you must first focus on the CUDA thread. The
GPU focus thread in the CLI is the same as in the GUI:
d1.<> dfocus .-1
d1.-1
d1.-1>

The dwhat command prints the type and address offset or PTX register name of a variable. The dwhat command
prints additional lines that have been omitted here for clarity:

Compiling for Debugging Displaying CUDA Program Elements 437

Debugging CUDA Programs

d1.-1> dwhat A
In thread 1.-1:
Name: A; Type: @parameter const Matrix; Size: 24 bytes; Addr: 0x00000010
...
d1.-1> dwhat blockRow
In thread 1.-1:
Name: blockRow; Type: @register int; Size: 4 bytes; Addr: %r2
...
d1.-1> dwhat Csub
In thread 1.-1:
Name: Csub; Type: @local Matrix; Size: 24 bytes; Addr: 0x00000060
...
d1.-1>

You can use dprint in the CLI to cast and print an address offset as a particular type. Note that the CLI is a Tcl
interpreter, so we wrap the expression argument to dprint in curly braces {} for Tcl to treat it as a literal string to
pass into the debugger. For example, below we take the address of "A", which is at 0x10 in parameter storage.
Then, we can cast 0x10 to a "pointer to a Matrix in parameter storage", as follows:
d1.-1> dprint {&A}
&A = 0x00000010 -> (Matrix const @parameter)
d1.-1> dprint {*(@parameter Matrix*)0x10}
(@parameter Matrix)0x10 = {
width = 0x00000002 (2)
height = 0x00000002 (2)
stride = 0x00000002 (2)
elements = 0x00110000 -> 0
}
d1.-1>

The above "@parameter" type qualifier is an important part of the cast, because without it the debugger cannot
determine the storage kind of the address offset. Casting without the proper type storage qualifier usually results
in "Bad address" being displayed, as follows:
d1.-1> dprint {*(Matrix*)0x10}
(Matrix)0x10 = <Bad address: 0x00000010> (struct Matrix)
d1.-1>

You can perform similar casts for global storage addresses. We know that "A.elements" is a pointer to a 2x2 array
in global storage. The value of the pointer is 0x110000 in global storage. You can use C/C++ cast syntax:
d1.-1> dprint {A.elements}
A.elements = 0x00110000 -> 0
d1.-1> dprint {*(@global float(*)[2][2])0x00110000}
(@global float()[2][2])0x00110000 = {
[0][0] = 0
[0][1] = 1
[1][0] = 10
[1][1] = 11
}
d1.-1>

Or you can use TotalView cast syntax, which is an extension to C/C++ cast syntax that allows you to simply read
the type from right to left to understand what it is:
d1.-1> dprint {*(@global float[2][2]*)0x00110000}
(@global float[2][2])0x00110000 = {
[0][0] = 0

Compiling for Debugging Displaying CUDA Program Elements 438

Debugging CUDA Programs

[0][1] = 1
[1][0] = 10
[1][1] = 11
}
d1.-1>

If you know the address of a pointer and you want to print out the target of the pointer, you must specify a stor-
age qualifier on both the pointer itself and the target type of the pointer. For example, if we take the address of
"A.elements", we see that it is at address offset 0x20 in parameter storage, and we know that the pointer points
into global storage. Consider this example:
d1.-1> dprint {*(@global float[2][2]*@parameter*)0x20}
(@global float[2][2]@parameter*)0x20 = 0x00110000 -> (@global float[2][2])
d1.-1> dprint {**(@global float[2][2]*@parameter*)0x20}
**(@global float[2][2]*@parameter*)0x20 = {
[0][0] = 0
[0][1] = 1
[1][0] = 10
[1][1] = 11
}
d1.-1>

Above, using the TotalView cast syntax and reading right to left, we cast 0x20 to a pointer in parameter storage to
a pointer to a 2x2 array of floats in global storage. Dereferencing it once gives the value of the pointer to global
storage. Dereferencing it twice gives the array in global storage. The following is the same as above, but this time
in C/C++ cast syntax:
d1.-1> dprint {*(@global float(*@parameter*)[2][2])0x20}
(@global float(@parameter*)[2][2])0x20 = 0x00110000 -> (@global float[2][2])
d1.-1> dprint {**(@global float(*@parameter*)[2][2])0x20}
**(@global float(*@parameter*)[2][2])0x20 = {
[0][0] = 0
[0][1] = 1
[1][0] = 10
[1][1] = 11
}
d1.-1>

PTX Registers

In CUDA, PTX registers are more like symbolic virtual locations than hardware registers in the classic sense. At any
given point during the execution of CUDA device code, a variable that has been assigned to a PTX register may
live in one of three places:

 A hardware (SAS) register

 Local storage

 Nowhere (its value is dead)

Variables that are assigned to PTX registers are qualified with the "@register" type storage qualifier, and their
locations are PTX register names. The name of a PTX register can be anything, but the compiler usually assigns a
name in one of the following formats: %rN, %rdN, or %fN, where N is a decimal number.

Compiling for Debugging The GPU Status View 439

Debugging CUDA Programs

Using compiler-generated location information, TotalView maps a PTX register name to the SASS hardware regis-
ter or local memory address where the PTX register is currently allocated. If the PTX register value is "live", then
TotalView shows you the SASS hardware register name or local memory address. If the PTX register value is
"dead", then TotalView displays Bad address and the PTX register name as show in Figure 140.

Figure 140, PTX register variables: one live, one dead

The GPU Status View
Along with using GPUs and other hardware accelerator processing units designed for HPC computing, program-
mers may also incorporate hybrid parallelism combining multiple MPI processes with other multi-threaded and
device-aware programming models intended to effectively harness on-node parallelism, such as OpenMP.

Given the scales and number of layers involved, global GPU analysis features are required to be able to deter-
mine the execution state of one or more GPUs in a job. For example, a process running code on a single GPU
may contain tens of thousands of executing lanes (i.e., threads). The individual lanes are grouped into warps of
32 lanes while hundreds of warps are grouped into blocks. Thousands of blocks are then spread across dozens
of streaming multiprocessors.

Compounding the complexity found on a single GPU, a single process may be running code on multiple GPUs,
and that process may be part of an MPI job consisting of tens, hundreds, or even thousands of processes, each
running code on their own GPUs. Even a modest-sized MPI job may consist of millions of blocks and tens of mil-
lions of lanes.

The GPU Status View provides the ability to filter, sort, and aggregate GPU execution status and to control the
focus to support setting group, process, and device (CUDA context thread) widths.

Using this view, you can:

Compiling for Debugging The GPU Status View 440

Debugging CUDA Programs

 Aggregate and filter the GPU status information from one or more GPU devices and from one or
more processes, based on a number of user-selected state variables.

By default, the selected state variables used in the aggregation include the process ID, the device, the CUDA
thread execution state (i.e., stopped, breakpoint, etc.), the function, and the GPU physical device information
(SM, warp, lane).

 Sort the output by any of the state variables used in the aggregated tree output.

 Change the focus width of the view to show the status for either a group (control or share group), a
single process (the current process in focus in the UI), or a single TotalView CUDA context thread.

The GPU Status View is a visual representation in the UI of the CLI command dgpu_status.

To turn on the view, load a GPU program, then select Windows > Views > GPU Status. The view is empty until the
program starts running.

The view also opens automatically when TotalView recognizes a kernel loaded on the device and a CUDA context
thread is created.

The GPU Status View Focus Options

Figure 141 shows the view after a program has loaded a GPU kernel and stopped at a breakpoint. By default, the
view displays the process ID, physical GPU coordinates, function name, and execution state.

Compiling for Debugging The GPU Status View 441

Debugging CUDA Programs

Figure 141, GPU Status View

This GPU program is running:

 A single process (p1)

 On one device (0)

 With 9 SMs, identified using a stride of “2” (which truncates the list for UI display). In this case, the
SM identifiers would be 0, 2, 4, 6, 8, 10, 12, 14, and 16.

 With each SM containing one warp (0)

 With each warp containing 4 lanes (0, 1, 2, 3)

 With all lanes stopped at breakpoint in function MatMulKernel().

The view has a Focus width dropdown which includes the Control Group, Share Group, Process, and a list of any
CUDA context threads within the focus process.

The focus width is based on the process that is currently in focus in the UI. A focus of "Share Group," for example,
it would be the share group containing the process in focus in the UI.

Other features of this view:

 The configure icon () launches the Configuration Options for grouping, sorting, and filtering
data in the view.

Compiling for Debugging The GPU Status View 442

Debugging CUDA Programs

 The update icon () updates the view. The view is not automatically updated when status
changes. When grayed out, the view is up to date.

Configuring the GPU Status View

You can group and sort the aggregated data based on a range of state variables, using the Configuration Options

dialog, opened by selecting the configure icon ().

Figure 142, GPU Status Configuration Options dialog

Select Variables to Display

Variables selected in the Display column are placed into the Group By and Sort By columns where they are
available to be selected to change the aggregation. Some variables are selected for display by default, including
state, dev, function, process, sm, warp, and lane. Add or remove variables by checking them in the Display col-
umn. Table 14 lists all available state variables.

Selecting or deselecting any item in this dialog activates the Preview button. For example, select line to add it to
the display, then press Preview.

Compiling for Debugging The GPU Status View 443

Debugging CUDA Programs

The line number is added to the display.

Preview provides just a temporary display of the view. Click OK to save the view or Reset to return the view to its
default settings. Cancel closes the view with no changes.

Select Variables to Group or Sort By

Select one or more variables in the Group By or Sort By columns to change the grouping and sorting display.

Display by logical coordinates

For example, check the logical coordinates (bx, by, bz, lx, ly, lz) under Display, then select them in the Group By
menu to change the display to logical coordinates, and then group by those coordinates.

Compiling for Debugging The GPU Status View 444

Debugging CUDA Programs

Figure 143, Configuration “Group By”

Group by state

Consider a program in which the threads unexpectedly diverge, as displayed in the view:

Figure 144, Diverging threads in the GPU Status View

Compiling for Debugging The GPU Status View 445

Debugging CUDA Programs

 The four active SMs, numbered 0, 2, 4, and 6, have a state of either breakpoint or diverged.

 In each SM, 32 warps, numbered 0 through 31, are valid.

 In each warp, 32 lanes are valid. However, some of the lanes have diverged, visible in the tooltip
that displays over long lines. The rest are at breakpoints.

To make the view more useful, add line to the display and then group by lane state.

Figure 145, Grouping by thread state

While the information has not changed, it’s now easy to see that, in every warp and SM, half the lanes — numbers
16 through 31 — have hit the breakpoint on line 248. The other half of the lanes — numbers 0 through 15 —
have diverged and are all at line 240.

You can use an include custom filter to refine the view further. See Configuring Custom Filters on page 447.

State Variables for Grouping and Sorting

Compiling for Debugging The GPU Status View 446

Debugging CUDA Programs

Table 14: State Variables for Grouping/Sorting

State Variable Description

state State of a lane. An enumerated value

dev Device ID for GPU (an integer)

function Name of the function that contains a lane PC

line "filename#number": the file and line number of a lane PC

process CPU process ID, either as MPI rank or as dpid

sm ID of an SM (an integer)

warp ID of a warp within an SM (an integer)

pc PC of a lane (an integer)

lane ID of a lane within a warp (an integer)

dev_type GPU device type (a character string)

sm_type SM type for the GPU (a character string)

sm_count Number of SMs in the device (an integer)

warps_per_sm Number of warps in each SM (an integer)

lanes_per_warp Number of lanes in each warp (an integer)

regs_per_lane Number of registers available to each lane (an integer)

valid_warp_mask Bit mask indicating which warps are valid in an SM

valid_lane_mask Bit mask indicating which lanes are valid in a warp

active_lane_mask Bit mask indicating which lanes are active in a warp

broke_lane_mask Bit mask indicating which lanes are at breakpoints

bx X coordinate of a block (an integer)

by Y coordinate of a block (an integer)

bz Z coordinate of a block (an integer)

lx X coordinate of a thread within a block (an integer)

ly Y coordinate of a thread within a block (an integer)

lz Z coordinate of a thread within a block (an integer)

Compiling for Debugging The GPU Status View 447

Debugging CUDA Programs

Configuring Custom Filters

Create a custom filter in the Create New Filter pane in which you can include or exclude values that match or do
not match the values of certain state variables from the display. This pane contains combo boxes for building the
filter.

 Include/exclude: Determine whether to “include” or “exclude” a filter. If both “include” and
“exclude” filters are specified, the first one determines the overall behavior.

For example, if “include” comes first, then only threads meeting the criteria will be included. If '“exclude” is
first, then all threads that don't meet the criteria will be displayed. Subsequent “include” and “exclude” filters
define exceptions to this overall behavior. See Figure 147 for an example.

 Variable: Choose a variable from the dropdown. The variable state is the default.

 Comparison operator: Depends on the selected variable. If the state variable is a string value, the
dropdown shows only == and !=. However, if it is an integer value, the dropdown contains
additional comparison operators, like so:

 Value to compare: Enter the value to compare against here. The value field is an editable text box.
For variables that have a limited set of valid values, those values are displayed. For instance,
choosing the variable state populates this dropdown with a list of possible states:

Compiling for Debugging The GPU Status View 448

Debugging CUDA Programs

 AND/OR: Within a list of “include” or “exclude” filters, the predicates can be either “ANDed” or
“ORed” together. If there are both AND and OR predicates, AND takes precedence over OR.

To build a filter, select the elements, then click ADD.

Examples

Let’s look again at the program in which the threads diverged (Figure 144). In addition to grouping the output by
thread state, Figure 146 uses a custom filter to limit the display to show only those threads that have diverged.

Figure 146, Custom filter by a state of “diverged”

Compiling for Debugging Enabling CUDA Memory Checker Feature 449

Debugging CUDA Programs

You can create multiple custom filters, and activate or de-activate them using the left checkbox.

Use “include” and “exclude” together to establish the overall filter behavior, then refine it. Figure 147 first includes
all threads at breakpoint, but then excludes those running on SM 2.

Figure 147, Mixing include and exclude filters

Enabling CUDA Memory Checker Feature
You can detect global memory addressing violations and misaligned global memory accesses by enabling the
CUDA Memory Checker feature.

Enable this feature either in the UI or the CLI.

From the UI

In the UI, either:

Compiling for Debugging Enabling CUDA Memory Checker Feature 450

Debugging CUDA Programs

 Select "Enable CUDA memory checking" in the Program Session dialog.

This dialog is available when you first launch a debugging session and also via the Process > Modify Argu-
ments menu from within an existing session.

 From the Debug menu, choose “Enable CUDA memcheck”:

From the CLI

In the CLI, either:

 Pass the -cuda_memcheck option to the totalview command, for example:

totalview -cuda_memcheck

 Set the TV::cuda_memcheck CLI state variable to true. For example:
dset TV::cuda_memcheck true

Note that global memory violations and misaligned global memory accesses will be detected only while the CUDA
thread is running. Detection will not happen when single-stepping the CUDA thread.

Compiling for Debugging GPU Core Dump Support 451

Debugging CUDA Programs

GPU Core Dump Support
CUDA GPU core dumps can be debugged just as you debug any other core dump. To obtain a GPU core dump,
you must first set the CUDA_ENABLE_COREDUMP_ON_EXCEPTION environment variable to 1 to enable genera-
tion of a GPU core dump when a GPU exception is encountered. This option is disabled by default.

To change the default core dump file name, set the CUDA_COREDUMP_FILE environment variable to a specific file
name. The default core dump file name is in the following format: core.cuda.<hostname>.<pid> where
<hostname> is the host name of machine running the CUDA application and <pid> is the process identifier of
the CUDA application.

To debug a GPU core dump, TotalView must be running on a machine with the CUDA SDK installed.

As with any core dump, you must also supply the name of the executable that produced the core dump:
totalview <executable> <core-dump-file>

GPU Error Reporting
By default, TotalView reports GPU exception errors as "signals." Continuing the application after these errors can
lead to application termination or unpredictable results.

Table 4 lists reported errors, according to these platforms and settings:

 Exception codes Lane Illegal Address and Lane Misaligned Address are detected using
all supported SDK versions when CUDA memcheck is enabled, on supported Tesla and Fermi
hardware.

 All other CUDA errors are detected only for GPUs with sm_20 or higher (for example Fermi) running
SDK 3.1 or higher. It is not necessary to enable CUDA memcheck to detect these errors.

Table 15: CUDA Exception Codes

Exception code Error Precision Error Scope Description

CUDA_EXCEPTION_0:

“Device
Unknown
Exception”

Not precise Global error on
the GPU

An application-caused global GPU error that does
not match any of the listed error codes below.

CUDA_EXCEPTION_1:

“Lane
Illegal
Address”

Precise (Requires
memcheck on)

Per lane/thread
error

A thread has accessed an illegal (out of bounds)
global address.

Compiling for Debugging GPU Error Reporting 452

Debugging CUDA Programs

CUDA_EXCEPTION_2:

“Lane User
Stack
Overflow”

Precise Per lane/thread
error

A thread has exceeded its stack memory limit.

CUDA_EXCEPTION_3:

“Device
Hardware
Stack
Overflow”

Not precise Global error on
the GPU

The application has triggered a global hardware
stack overflow, usually caused by large amounts of
divergence in the presence of function calls.

CUDA_EXCEPTION_4:

“Warp
Illegal
Instruction”

Not precise Warp error A thread within a warp has executed an illegal
instruction.

CUDA_EXCEPTION_5:

“Warp Out-
of-range
Address”

Not precise Warp error A thread within a warp has accessed an address
that is outside the valid range of local or shared
memory regions.

CUDA_EXCEPTION_6:

“Warp
Misaligned
Address”

Not precise Warp error A thread within a warp has accessed an incorrectly
aligned address in the local or shared memory
segments.

CUDA_EXCEPTION_7:

“Warp
Invalid
Address
Space”

Not precise Warp error A thread within a warp has executed an instruc-
tion that attempts to access a memory space not
permitted for that instruction.

CUDA_EXCEPTION_8:

“Warp
Invalid PC”

Not precise Warp error A thread within a warp has advanced its PC
beyond the 40-bit address space.

CUDA_EXCEPTION_9:

“Warp
Hardware
Stack
Overflow”

Not precise Warp error A thread within a warp has triggered a hardware
stack overflow.

CUDA_EXCEPTION_10:

“Device
Illegal
Address”

Not precise Global error A thread has accessed an illegal (out of bounds)
global address. For increased precision, enable
memcheck.

Table 15: CUDA Exception Codes

Exception code Error Precision Error Scope Description

Compiling for Debugging GPU Error Reporting 453

Debugging CUDA Programs

CUDA_EXCEPTION_11:

“Lane
Misaligned
Address”

Precise (Requires
memcheck on)

Per lane/thread
error

A thread has accessed an incorrectly aligned
global address.

CUDA_EXCEPTION_12 :
"Warp Assert"

Precise Per warp Any thread in the warp has hit a device side
assertion.

CUDA_EXCEPTION_13:
"Lane Syscall
Error"

Precise (Requires
memcheck on)

Per lane/thread
error

A thread has corrupted the heap by invoking free
with an invalid address (for example, trying to free
the same memory region twice)

CUDA_EXCEPTION_14 :
"Warp Illegal
Address"

Not precise Per warp A thread has accessed an illegal (out of bounds)
global/local/shared address. For increased preci-
sion, enable the CUDA memcheck option. See
Enabling CUDA Memory Checker Feature on
page 449.

CUDA_EXCEPTION_15 :
"Invalid Managed
Memory Access"

Precise Per host thread A host thread has attempted to access managed
memory currently used by the GPU.

Table 15: CUDA Exception Codes

Exception code Error Precision Error Scope Description

CUDA Problems and Limitations GPU Error Reporting 454

Debugging CUDA Programs

 CUDA Problems and Limitations

 Hangs or Initialization Failures on page 455

 CUDA and ReplayEngine on page 456

CUDA TotalView sits directly on top of the CUDA debugging environment provided by NVIDIA, which is still evolv-
ing and maturing. This environment contains certain problems and limitations, discussed in this chapter.

Hangs or Initialization Failures GPU Error Reporting 455

Debugging CUDA Programs

Hangs or Initialization Failures
When starting a CUDA debugging session, you may encounter hangs in the debugger or target application, initial-
ization failures, or failure to launch a kernel. Use the following checklist to diagnose the problem:

Serialized Access

There may be at most one CUDA debugging session active per node at a time. A node cannot be shared for de-
bugging CUDA code simultaneously by multiple user sessions, or multiple sessions by the same user. Use ps or
other system utilities to determine if your session is conflicting with another debugging session.

Leaky Pipes

The CUDA debugging environment uses FIFOs (named pipes) located in "/tmp" and named matching the pattern
"cudagdb_pipe.N.N", where N is a decimal number. Occasionally, a debugging session might accidentally leave a
set of pipes lying around. You may need to manually delete these pipes in order to start your CUDA debugging
session:

rm /tmp/cudagdb_pipe.*
If the pipes were leaked by another user, that user will own the pipes and you may not be able to delete them. In
this case, ask the user or system administrator to remove them for you.

Orphaned Processes

Occasionally, a debugging session might accidentally orphan a process. Orphaned processes might go compute
bound or prevent you or other users from starting a debugging session. You may need to manually kill orphaned
CUDA processes in order to start your CUDA debugging session or stop a compute-bound process. Use system
tools such as ps or top to find the processes and kill them using the shell kill command. If the process were or-
phaned by another user, that user will own the processes and you may not be able to kill them. In this case, ask
the user or system administrator to kill them for you.

Multi-threaded Programs on Fermi

We have seen problems debugging some multi-threaded CUDA programs on Fermi, where the CUDA debugging
environment kills the debugger with an internal error (SIGSEGV). We are working with NVIDIA to resolve this
problem.

CUDA and ReplayEngine GPU Error Reporting 456

Debugging CUDA Programs

CUDA and ReplayEngine
You can enable ReplayEngine while debugging CUDA code; that is, ReplayEngine record mode will work. However,
ReplayEngine does not support replay operations when focused on a CUDA thread. If you attempt this, you will
receive a Not -Supported error.

Sample CUDA Program GPU Error Reporting 457

Debugging CUDA Programs

 Sample CUDA Program

/*
* NVIDIA CUDA matrix multiply example straight out of the CUDA
* programming manual, more or less.
*/
#include <cuda.h>
#include <stdio.h>
// Matrices are stored in row-major order:
// M(row, col) = *(M.elements + row * M.stride + col)
typedef struct {
int width; /* number of columns */
int height; /* number of rows */
int stride;
float* elements;
} Matrix;
// Get a matrix element
__device__ float GetElement(const Matrix A, int row, int col)
{
return A.elements[row * A.stride + col];
}
// Set a matrix element
__device__ void SetElement(Matrix A, int row, int col, float value)
{
A.elements[row * A.stride + col] = value;
}
// Thread block size
#define BLOCK_SIZE 2
// Get the BLOCK_SIZExBLOCK_SIZE sub-matrix Asub of A that is
// located col sub-matrices to the right and row sub-matrices down
// from the upper-left corner of A
__device__ Matrix GetSubMatrix(Matrix A, int row, int col)
{
Matrix Asub;
Asub.width = BLOCK_SIZE;
Asub.height = BLOCK_SIZE;
Asub.stride = A.stride;
Asub.elements = &A.elements[A.stride * BLOCK_SIZE * row
+ BLOCK_SIZE * col];
return Asub;
}
// Forward declaration of the matrix multiplication kernel
__global__ void MatMulKernel(const Matrix, const Matrix, Matrix);
// Matrix multiplication - Host code

Sample CUDA Program GPU Error Reporting 458

Debugging CUDA Programs

// Matrix dimensions are assumed to be multiples of BLOCK_SIZE
void MatMul(const Matrix A, const Matrix B, Matrix C)
{
// Load A and B to device memory
Matrix d_A;
d_A.width = d_A.stride = A.width; d_A.height = A.height;
size_t size = A.width * A.height * sizeof(float);
cudaMalloc((void**)&d_A.elements, size);
cudaMemcpy(d_A.elements, A.elements, size,
cudaMemcpyHostToDevice);
Matrix d_B;
d_B.width = d_B.stride = B.width; d_B.height = B.height;
size = B.width * B.height * sizeof(float);
cudaMalloc((void**)&d_B.elements, size);
cudaMemcpy(d_B.elements, B.elements, size,
cudaMemcpyHostToDevice);
// Allocate C in device memory
Matrix d_C;
d_C.width = d_C.stride = C.width; d_C.height = C.height;
size = C.width * C.height * sizeof(float);
cudaMalloc((void**)&d_C.elements, size);
// Invoke kernel
dim3 dimBlock(BLOCK_SIZE, BLOCK_SIZE);
dim3 dimGrid(B.width / dimBlock.x, A.height / dimBlock.y);
MatMulKernel<<<dimGrid, dimBlock>>>(d_A, d_B, d_C);
// Read C from device memory
cudaMemcpy(C.elements, d_C.elements, size,
cudaMemcpyDeviceToHost);
// Free device memory
cudaFree(d_A.elements);
cudaFree(d_B.elements);
cudaFree(d_C.elements);
}
// Matrix multiplication kernel called by MatrixMul()
__global__ void MatMulKernel(Matrix A, Matrix B, Matrix C)
{
// Block row and column
int blockRow = blockIdx.y;
int blockCol = blockIdx.x;
// Each thread block computes one sub-matrix Csub of C
Matrix Csub = GetSubMatrix(C, blockRow, blockCol);
// Each thread computes one element of Csub
// by accumulating results into Cvalue
float Cvalue = 0;
// Thread row and column within Csub
int row = threadIdx.y;
int col = threadIdx.x;
// Loop over all the sub-matrices of A and B that are
// required to compute Csub
// Multiply each pair of sub-matrices together
// and accumulate the results
for (int m = 0; m < (A.width / BLOCK_SIZE); ++m) {
// Get sub-matrix Asub of A
Matrix Asub = GetSubMatrix(A, blockRow, m);
// Get sub-matrix Bsub of B
Matrix Bsub = GetSubMatrix(B, m, blockCol);
// Shared memory used to store Asub and Bsub respectively
__shared__ float As[BLOCK_SIZE][BLOCK_SIZE];
__shared__ float Bs[BLOCK_SIZE][BLOCK_SIZE];

Sample CUDA Program GPU Error Reporting 459

Debugging CUDA Programs

// Load Asub and Bsub from device memory to shared memory
// Each thread loads one element of each sub-matrix
As[row][col] = GetElement(Asub, row, col);
Bs[row][col] = GetElement(Bsub, row, col);
// Synchronize to make sure the sub-matrices are loaded
// before starting the computation
__syncthreads();
// Multiply Asub and Bsub together
for (int e = 0; e < BLOCK_SIZE; ++e)
Cvalue += As[row][e] * Bs[e][col];
// Synchronize to make sure that the preceding
// computation is done before loading two new
// sub-matrices of A and B in the next iteration
__syncthreads();
}
// Write Csub to device memory
// Each thread writes one element
SetElement(Csub, row, col, Cvalue);
// Just a place to set a breakpoint in the debugger
__syncthreads();
__syncthreads(); /* STOP: Csub should be fully updated */
}
static Matrix
cons_Matrix (int height_, int width_)
{
Matrix A;
A.height = height_;
A.width = width_;
A.stride = width_;
A.elements = (float*) malloc(sizeof(*A.elements) * width_ * height_);
for (int row = 0; row < height_; row++)
for (int col = 0; col < width_; col++)
A.elements[row * width_ + col] = row * 10.0 + col;
return A;
}
static void
print_Matrix (Matrix A, char *name)
{
printf("%s:\n", name);
for (int row = 0; row < A.height; row++)
for (int col = 0; col < A.width; col++)
printf ("[%5d][%5d] %f\n", row, col, A.elements[row * A.stride + col]);
}
// Multiply an m*n matrix with an n*p matrix results in an m*p matrix.
// Usage: tx_cuda_matmul [m [n [p]]]
// m, n, and p default to 1, and are multiplied by BLOCK_SIZE.
int main(int argc, char **argv)
{
// cudaSetDevice(0);
const int m = BLOCK_SIZE * (argc > 1 ? atoi(argv[1]) : 1);
const int n = BLOCK_SIZE * (argc > 2 ? atoi(argv[2]) : 1);
const int p = BLOCK_SIZE * (argc > 3 ? atoi(argv[3]) : 1);
Matrix A = cons_Matrix(m, n);
Matrix B = cons_Matrix(n, p);
Matrix C = cons_Matrix(m, p);
MatMul(A, B, C);
print_Matrix(A, "A");

Sample CUDA Program GPU Error Reporting 460

Debugging CUDA Programs

print_Matrix(B, "B");
print_Matrix(C, "C");
return 0;
}

461

 Debugging AMD ROCm Programs

 AMD ROCm Debugging Overview

 Installing the AMD Tool Chain on page 462

 AMD ROCm Debugging Model and Unified Display

 The TotalView AMD ROCm Debugging Model

 Pending and Sliding Breakpoints

 Unified Source View and Breakpoint Display

 AMD ROCm Debugging Tutorial

 Compiling for Debugging

 Starting a TotalView ROCm Session

 Displaying ROCm Program Elements

 GPU Core Dump Support

 GPU Error Reporting

 AMD ROCm Problems and Limitations

 Hangs or Initialization Failures

 Sample HIP Program

AMD ROCm Debugging Overview Installing the AMD Tool Chain 462

Debugging AMD ROCm Programs

AMD ROCm Debugging Overview
The TotalView debugger is an integrated debugging tool capable of simultaneously debugging HIP (Heteroge-
neous Interface for Portability) code running on both the host system and in the ROCm environment on an AMD
GPU.

Supported major features:

 Debug HIP applications running directly on AMD GPU hardware

 Set breakpoints, pause execution, and single step in HIP code

 Access runtime variables, such as threadIdx, blockIdx, blockDim, etc.

 Debug multiple GPU devices per process

 Debug remote, distributed, and clustered systems

 Support for host debugging features

Requirements:

The AMD ROCm platform and a host distribution supported by AMD. For versions and supported AMD GPUs, see
the TotalView Supported Platforms Guide.

Installing the AMD Tool Chain
Before you can debug an AMD program, download and install the ROCm software from AMD. Visit the installation
and download page at https://docs.amd.com. During the installation, select a supported Linux distribution.

By default, ROCm is installed in /opt/rocm-<version>. After installing, you may wish to:

 Add the ROCm binaries to your PATH:

export PATH=$PATH:/opt/rocm-<version>/bin:/opt/rocm-<version>/opencl/bin

 Add the ROCm library version to your LD_LIBRARY_PATH environment variable:

export LD_LIBRARY_PATH=/opt/rocm-<version>/lib;/opt/rocm-<version>/lib64

https://docs.amd.com

AMD ROCm Debugging Model and Unified Display The TotalView AMD ROCm Debugging Model 463

Debugging AMD ROCm Programs

AMD ROCm Debugging Model and Unified
Display
 The TotalView AMD ROCm Debugging Model on page 463

 Pending and Sliding Breakpoints on page 465

 Unified Source View and Breakpoint Display on page 466

Debugging HIP programs running on an AMD GPU presents some challenges when it comes to setting action
points. When the host process starts, the GPU code objects have not yet been loaded onto the GPU, so the GPU
code is not yet visible to the debugger for setting breakpoints. (This is also true of any libraries that are dynami-
cally loaded using dlopen and against which the code was not originally linked.)

To address this issue, TotalView allows setting a breakpoint on any line in the Source view, whether or not it can
identify executable code for that line. The breakpoint becomes either a pending breakpoint or a sliding breakpoint
until the GPU code is loaded onto the GPU agent at runtime.

The Source view provides a unified display that includes line number symbols and breakpoints that span the host
executable, host shared libraries, and the GPU ELF images loaded into the GPU agents. This design allows you to
easily set breakpoints and view line number information for the host and HIP code at the same time. This is made
possible by the way GPU agents are grouped, discussed in the section The TotalView AMD ROCm Debugging
Model on page 463.

The TotalView AMD ROCm Debugging Model
Each GPU agent, or device, is represented in the debugger as a single TotalView thread, called the “AMD GPU
agent TotalView thread” or GPU agent thread for short in this documentation. (This is not to be confused with a
single thread of execution, sometimes called a “work-item” or “lane.”). In TotalView, CPU threads have positive IDs,
while GPU agent threads have negative IDs.

Breakpoints apply to both the CPU and GPU code

The address spaces of the Linux CPU process and the address spaces of the ROCm threads are placed into the
same share group. Breakpoints are created and evaluated within the share group, and apply to all of the image
files (executable, shared libraries, and ROCm ELF images) in the share group.

That means that a source-level breakpoint can apply to both the CPU and GPU code. This allows setting break-
points on source lines in the CPU code that are then planted at the same source location in the GPU code, once
the GPU kernel starts.

AMD ROCm Debugging Model and Unified Display The TotalView AMD ROCm Debugging Model 464

Debugging AMD ROCm Programs

GPU and Linux address spaces overlap and each agent is mapped to all other agents

Unlike CUDA GPUs, the AMD GPU address spaces and Linux process address spaces overlap within a process.
Each device in a process gets its own range of virtual addresses. In addition, the global memory of every GPU
agent in a process is mapped into every other agent; for example, if there are eight GPUs in the system, each GPU
agent is also mapped into the other GPU agents, as well as into the Linux process. However, TotalView models
the global address spaces of the Linux process and GPU agents as all being discrete.

Consider a Linux process consisting of two Linux pthreads and two AMD GPU agents. Figure 148 illustrates how
TotalView would group the Linux and AMD GPU agents.

NOTE: An AMD GPU agent is represented in TotalView as a thread with a negative thread ID, called
the GPU agent thread.

The Linux host ROCm process

A Linux host AMD GPU process consists of:

 A Linux process address space, containing a Linux executable and a list of Linux shared libraries.

 A collection of Linux threads, where a Linux thread:

 Is assigned a positive debugger thread ID.

 Shares the Linux process address space with other Linux threads.

Figure 148, TotalView AMD GPU debugging model

AMD ROCm Debugging Model and Unified Display Disabling Deferred GPU Image Loading 465

Debugging AMD ROCm Programs

 A collection of AMD GPU agents, where a GPU agent:

 Is assigned a negative TotalView thread ID.

 Has its own global address space, separate from the Linux process address space, and sepa-
rate from the global address spaces of other GPU agents.

 Has a "GPU focus thread," which is focused on a specific hardware work-item (also known as
a lane).

The above TotalView AMD ROCm debugging model is reflected in the TotalView user interface and command line
interface. In addition, ROCm-specific CLI commands allow you to inspect ROCm work-items, change the focus,
and display their status.

Disabling Deferred GPU Image Loading
The HIP runtime normally does not load GPU ELF images onto the GPUs until a kernel is launched. However, it
supports a feature that allows loading the GPU images onto the GPU before the program enters main(). As a
result, the debugger can read the GPU symbol table information before the kernel is launched, allowing you to
plant breakpoints and inspect the actual kernel code.

Setting the HIP_ENABLE_DEFERRED_LOADING environment variable to 0 disables deferred image loading by
the HIP runtime. For example:
export HIP_ENABLE_DEFERRED_LOADING=0
See the AMD documentation for more information on the use and implications of this environment variable.

Pending and Sliding Breakpoints
Because AMD GPU threads and the CPU process are all in the same share group, you can create pending or slid-
ing breakpoints on source lines and functions in the GPU code before the code is loaded onto the GPU. If
TotalView can’t locate code associated with a particular line in the source view, you can still plant a breakpoint
there, if you know that there will be code there once the GPU kernel loads.

Pending and sliding breakpoints are not specific to GPUs and are discussed in more detail in Setting Source-
Level Breakpoints on page 85.

RELATED TOPICS
Sliding breakpoints Sliding Breakpoints on page 87

Pending breakpoints Pending Breakpoints on page 89

Pending evalpoints Creating a Pending Evalpoint on page 100

AMD ROCm Debugging Model and Unified Display Unified Source View and Breakpoint Display 466

Debugging AMD ROCm Programs

Unified Source View and Breakpoint Display
Because the TotalView GPU agent threads are in the same share group as are their host Linux processes, the
Source view displays a unified view of lines and breakpoints set in both the host code and the GPU code.
TotalView determines the equivalence of host and HIP source files by comparing the base name and directory
path of each source file in the share group; if they are equal, the line number information is unified in the Source
view.

NOTE: A unified display is not specific to GPUs but is well suited to debugging HIP programs. It is dis-
cussed in more detail in The Source View on page 7.

This unified display is particularly visible when breakpoints are set. For example, Figure 149 shows source code
before the kernel has launched. A breakpoint has been set at line 134 which slid to line 142 in the host code.

After kernel launch, Figure 150 shows that TotalView has read the line number information for the GPU image,
and there is now a breakpoint corresponding to the line number in the full breakpoint expression in the Action
Points tab.

How the unified Source view displays break-
points in dynamically-loaded code

Unified Source View and Breakpoint Display on page 466

Using dactions to display pending and mixed
breakpoint detail before and after ROCm code
has loaded.

“Examples of Actions Points in Both Host and Dynamically
Loaded Code” in the dactions entry in the TotalView Reference
Guide

Figure 149, Source view before GPU kernel launch

RELATED TOPICS

AMD ROCm Debugging Model and Unified Display Unified Source View and Breakpoint Display 467

Debugging AMD ROCm Programs

Notice also that the source-line breakpoint markers for the kernel code have been unified with the CPU code. For
example, lines 134 and 136-138 appeared with no bold before runtime, but after the kernel was launched,
TotalView was able to identify line number symbol information there, so the line numbers now appear bold.

Figure 150, Source view after kernel launch

RELATED TOPICS
More on the unified Source view display Unified Source View Display on page 8

The AMD ROCm share group model The TotalView AMD ROCm Debugging Model on
page 463

Using dactions to display pending and mixed breakpoint
detail before and after HIP code has loaded.

“Examples of Actions Points in Both Host and
Dynamically Loaded Code” in the dactions entry in
the TotalView Reference Guide

AMD ROCm Debugging Tutorial Compiling for Debugging 468

Debugging AMD ROCm Programs

 AMD ROCm Debugging Tutorial

 Compiling for Debugging on page 468

 Starting a TotalView ROCm Session on page 468

 Displaying ROCm Program Elements on page 473

NOTE: Support for debugging ROCm HIP programs is enabled by default. If you want to disable it, use
the -no_rocm option when starting TotalView, like this:
totalview -no_rocm
To re-enable it:
totalview -rocm

Compiling for Debugging
When compiling a HIP program for debugging, pass the -g option to the compiler for source-level debugging. In
addition, the option -O0 turns off all optimizations to better facilitate debugging. For example, to compile the HIP
program named tx_hip_matmul for debugging, use the following:

ROCm 5.4:
/opt/rocm-5.4.0/bin/hipcc -O0 -g -o tx_hip_matmul tx_hip_matmul.cpp
Access the source code for this HIP program tx_hip_matmul at Sample HIP Program on page 481.

Starting a TotalView ROCm Session
A standard TotalView installation supports debugging HIP applications running on both the host and GPU proces-
sors. TotalView dynamically detects a ROCm installation on your system. To start the TotalView GUI or CLI, provide
the name of your ROCm host executable to the totalview or totalviewcli command. For example, to start the
TotalView UI on the sample program, use the following command:

% totalview tx_hip_matmul
If TotalView successfully loads the HIP debugging library, it prints to the log the current ROCm debugger API ver-
sion (ROCdbgapi) and the ROCm driver version:

AMD ROCm Debugging Tutorial Controlling Execution 469

Debugging AMD ROCm Programs

ROCm debug library loaded: Current DLL API version is "0.68.0" (build "0.68.0-rocm-
rel-5.4-72")
...

After reading the symbol table information for the GPU host executable, TotalView opens the Source view
focused on main in the host code, as shown in Figure 151.

Figure 151, Source view opened on GPU host code

You can debug the GPU host code using the normal TotalView commands and procedures.

Controlling Execution
Set breakpoints in GPU code before you start the process. If you start the process without setting any break-
points, there are no prompts to set them afterward.

Note that breakpoints set in GPU code will slide to the next host (CPU) line in the source file, but once the pro-
gram is running and the GPU code is loaded, TotalView recalculates the breakpoint expression and plants a
breakpoint at the proper location in the GPU code. (See Sliding Breakpoints on page 87.)

Note that breakpoints set in GPU source code might slide to a host source line that is executed before the GPU
code is loaded; thus, the process might unexpectedly stop at that line before it stops in the GPU kernel.

AMD ROCm Debugging Tutorial Controlling Execution 470

Debugging AMD ROCm Programs

Viewing GPU Threads

Once the GPU kernel starts executing, it will hit breakpoints planted in the GPU code, as shown in Figure 152.

Figure 152, ROCm thread stopped at a breakpoint, focused on GPU work-item (0,0,0)[1,0,0]

The logical coordinates of the GPU focus work-group and work-items are displayed in the GPU logical toolbar
at the top of Figure 152 above. (See GPU Toolbars.) The WorkGroup control shows the 3-D focus position of the
work-group in the kernel dispatch. The WorkItem control shows the 3-D focus position of the work-item in the
work-group.

The GPU focus work-group and/or work-item can be changed using the GPU focus selector in the logical tool-
bar. When you change the GPU focus work-group or work-item, the logical coordinates displayed also change,
and the Call Stack and Source view are updated to reflect the state of the new GPU focus work-group or work-
item.

The execution location of the GPU focus work-item is identified by the yellow PC highlighted line in the Source
view. The work-items are grouped into "wavefronts" (or "waves" for short) that execute in parallel, so multiple
work-items may have the same PC value. The work-items may be part of the same wave (consisting of 32 or 64
lanes that execute concurrently), or part of different waves.

The Local Variables view shows the parameters and local variables for the function in the selected stack frame.
The variables for the selected GPU kernel code, function, or inlined function expansion are shown.

AMD ROCm Debugging Tutorial Controlling Execution 471

Debugging AMD ROCm Programs

The Call Stack shows the stack backtrace and inlined functions:

Each stack frame in the stack backtrace represents either the PC location of GPU kernel code, or the expansion of
an inlined function.

GPU Agent Thread IDs and Coordinate Spaces

Again, TotalView gives host threads a positive debugger thread ID and GPU agent threads a negative thread ID. In
this example, the initial host thread in process "1" is labeled "1.1" and the GPU agent thread is labeled "1.-1".

Figure 153, ROCm GPU Thread IDs

Use the "GPU focus selector" on the GPU toolbar (See GPU Toolbars) to change the logical coordinates of the
GPU focus work-group and/or work-item.

Figure 154, GPU Focus Selector on the GPU logical toolbar

AMD ROCm Debugging Tutorial Controlling Execution 472

Debugging AMD ROCm Programs

GPU Toolbars

Two GPU toolbars display the two coordinate spaces. One is the logical coordinate space that, in AMD GPU terms,
incorporates work-groups and work-items: (Bx,By,Bz)[Tx,Ty,Tz].

The other is the "physical" coordinate space that is, in hardware terms, the wavefront ID (wave ID) assigned by the
AMD GPU debug API and the lane number index within the wave. Note that the wave ID is an arbitrary, unique
value, assigned by the debug API, and has no relationship to any physical aspect of the GPU agent.

Any given work-item has both a position in the physical coordinate space, and a position in the 6-D logical coordi-
nate space. These indices are shown in the two GPU toolbars. Changing the GPU focus in one coordinate space
changes the other.

Figure 155, GPU logical and physical toolbars

To view a host CPU thread, select a thread with a positive thread ID in the Process and Threads view. To view a
GPU agent thread, select an agent thread with a negative thread ID, then use the GPU work-group and/or work-
item selector on the logical toolbar to focus on a specific GPU work-item.

There is one GPU focus per GPU agent thread, and changing the GPU focus affects all windows displaying infor-
mation for that agent and all command line interface commands targeting that agent. In other words, changing
the GPU focus work-group or work-item can change the GPU data that is displayed and affect other commands,
such as single-stepping.

Note that in all cases, when you select a work-item, TotalView automatically updates the Source view, Call Stack,

Data View, and Action Points view to match the selected work-item.

Single-Stepping GPU Code

TotalView allows you to single-step GPU code just like normal host code. The GPU focus work-item is used to
guide the single-step operation in a manner similar to single-stepping a CPU thread. TotalView uses GPU-level
instruction disassembly, instruction-level stepping, and breakpoint hopping to implement GPU source-level single
stepping.

 Thread-width single-stepping: When the single-stepping width is a single GPU agent thread, all
the waves on the agent are allowed to execute until the GPU focus work-item reaches the source-
level single-stepping goal.

AMD ROCm Debugging Tutorial Displaying ROCm Program Elements 473

Debugging AMD ROCm Programs

 Process or group-width single stepping: When the single-stepping width is a process or a group,
all the GPU agent threads in the process or group are allowed to execute. This technique tends to
keep all the waves executing in lockstep because they normally hit the temporary breakpoints
planted by the source-level single stepper. However, wave and work-item divergence are allowed.

Halting a Running Application

You can temporarily halt a running application at any time by selecting "Halt", which halts the host and GPU agent
threads. This can be useful if you suspect the kernel might be hung or stuck in an infinite loop. You can resume
execution at any time by selecting "Go" or by selecting one of the single-stepping buttons.

Displaying ROCm Program Elements

GPU Variable and Data Display

TotalView can display variables and data for a specific GPU work-item on a GPU agent. Changing the GPU focus
for the GPU agent may also change the displayed data.

In the same way as when debugging CPU code, you can add an expression from the Local Variables view to the
Data View or create new expressions in the Data View to analyze your data. The variables are contained within the
lexical blocks in which they are defined.

Casting a Pointer to an Array

Casting works the same way as when debugging CPU code. See Casting to an Array in the Data View.

Here, let’s add the pointer A_d from the Local Variables view to the Data View, then edit the Type field to cast it to
a pointer to an array of elements.

Below, A_d is defined in the program as a uint32_t const *, which is a pointer to a const uint32_t. How-
ever, we know from the value of N, A_d is actually a pointer to an array of 1,000,000 uint32_t elements.

To cast the pointer, edit the Type field to read uint32_t const [1000000] *, which, reading from right to left,
is "a pointer to an array of 1,000,000 const uint32_t".

You can then dereference the pointer by expanding the tree control to see the array, and then expanding the
array to show the elements.

AMD ROCm Debugging Tutorial Displaying ROCm Program Elements 474

Debugging AMD ROCm Programs

Figure 156, Dereferencing a pointer in the Data View

AMD ROCm Debugging Tutorial Displaying ROCm Program Elements 475

Debugging AMD ROCm Programs

See the Values of Built-in Variables

You can add ROCm built-in variables to the Data View from the Source pane to view information about the grid or
the thread index, for example.

Figure 157, Adding built-in variables to the Data View

AMD ROCm Debugging Tutorial Displaying ROCm Program Elements 476

Debugging AMD ROCm Programs

Change the Focus and the Data View Updates

Note that the built-in variables, such as hipThreadIdx_x, reflect the GPU focus. If you change the focus in the
GPU toolbar, the value of these variables may change.

Figure 158, Changing the work-item focus is reflected in the Data View

ROCm Built-In Runtime Variables

TotalView allows access to the ROCm HIP built-in runtime variables, which are handled by TotalView like any other
variables, except that you cannot change their values.

The supported ROCm HIP built-in runtime variables are as follows:

 struct dim3_32 threadIdx;

 struct dim3_32 blockIdx;

RELATED TOPICS
Using the Data View The Data View on page 161

ROCm’s built-in variables ROCm Built-In Runtime Variables on page 476

AMD ROCm Debugging Tutorial GPU Error Reporting 477

Debugging AMD ROCm Programs

 struct dim3_32 blockDim;

 struct dim3_32 gridDim; // Grid sizes in work-group units

 struct dim3_32 gridDimWorkItems; // Grid sizes in work-item units

 int warpSize;

 unsigned int hipThreadIdx_x, hipThreadIdx_y, hipThreadIdx_z;

 unsigned int hipBlockIdx_x, hipBlockIdx_y, hipBlockIdx_z;

 unsigned int hipBlockDim_x, hipBlockDim_y, hipBlockDim_z;

 unsigned int hipGridDim_x, hipGridDim_y, hipGridDim_z;

The types of the built-in variables are defined as follows:

struct dim3_32 { unsigned int x, y, z; };

GPU Error Reporting
The AMD debugger’s exception system is not yet fully developed, so this release doesn’t yet support this feature,
although your GPU code may throw exceptions.

AMD ROCm Problems and Limitations GPU Error Reporting 478

Debugging AMD ROCm Programs

 AMD ROCm Problems and Limitations

 Hangs or Initialization Failures on page 479

 AMD GPU Debugging and ReplayEngine on page 480

AMD TotalView sits directly on top of the ROCm debugging environment provided by AMD, which is still evolving
and maturing. This environment contains certain problems and limitations, discussed in this chapter.

Hangs or Initialization Failures GPU Error Reporting 479

Debugging AMD ROCm Programs

Hangs or Initialization Failures
When starting an AMD GPU debugging session, you may encounter hangs in the debugger or target application,
initialization failures, or failure to launch a kernel. Use the following checklist to diagnose the problem:

Serialized Access

Older AMD GPU models (prior to MI200s) support at most one AMD GPU debugging session active per node at
a time. A node cannot be shared for debugging ROCm code simultaneously by multiple user sessions, or multi-
ple sessions by the same user. Use ps or other system utilities to determine if your session is conflicting with an-
other debugging session.

Orphaned Processes

Occasionally, a debugging session might accidentally orphan a process. Orphaned processes might go compute
bound or prevent you or other users from starting a debugging session. You may need to manually kill orphaned
ROCm processes in order to start your AMD GPU debugging session or stop a compute-bound process. Use
system tools such as ps or top to find the processes and kill them using the shell kill command. If the pro-
cess was orphaned by another user, that user will own the processes and you may not be able to kill them. In
this case, ask the user or system administrator to kill them for you.

AMD GPU Debugging and ReplayEngine GPU Error Reporting 480

Debugging AMD ROCm Programs

AMD GPU Debugging and ReplayEngine
Enabling ReplayEngine on processes that are using AMD GPUs is not supported.

Sample HIP Program GPU Error Reporting 481

Debugging AMD ROCm Programs

 Sample HIP Program

#include "hip/hip_runtime.h"
/*
 * A "hipified" version of the NVIDIA CUDA matrix multiple example
*/
#include <hip/hip_runtime.h>
#include <stdio.h>
// Matrices are stored in row-major order:
// M(row, col) = *(M.elements + row * M.stride + col)
typedef struct {
 int width;/* number of columns */
 int height;/* number of rows */
 int stride;
 float* elements;
} Matrix;
// Get a matrix element
/*__forceinline__*/ __device__ float GetElement(const Matrix A, int row, int col)
{
 return A.elements[row * A.stride + col];
}
// Set a matrix element
__forceinline__ __device__ void SetElement(Matrix A, int row, int col, float value)
{
 A.elements[row * A.stride + col] = value;
}
// Thread block size
#define BLOCK_SIZE 2
// Get the BLOCK_SIZExBLOCK_SIZE sub-matrix Asub of A that is
// located col sub-matrices to the right and row sub-matrices down
// from the upper-left corner of A
/*__forceinline__*/ __device__ Matrix GetSubMatrix(Matrix A, int row, int col)
{
 Matrix Asub;
 Asub.width = BLOCK_SIZE;
 Asub.height = BLOCK_SIZE;
 Asub.stride = A.stride;
 Asub.elements = &A.elements[A.stride * BLOCK_SIZE * row
 + BLOCK_SIZE * col];

 return Asub;
}
// Forward declaration of the matrix multiplication kernel
__global__ void MatMulKernel(const Matrix, const Matrix, Matrix);
// Matrix multiplication - Host code
// Matrix dimensions are assumed to be multiples of BLOCK_SIZE
void MatMul(const Matrix A, const Matrix B, Matrix C)
{
 // Load A and B to device memory

Sample HIP Program GPU Error Reporting 482

Debugging AMD ROCm Programs

 Matrix d_A;
 d_A.width = d_A.stride = A.width; d_A.height = A.height;
 size_t size = A.width * A.height * sizeof(float);
 hipMalloc((void**)&d_A.elements, size);
 hipMemcpy(d_A.elements, A.elements, size,
 hipMemcpyHostToDevice);

 Matrix d_B;
 d_B.width = d_B.stride = B.width; d_B.height = B.height;
 size = B.width * B.height * sizeof(float);
 hipMalloc((void**)&d_B.elements, size);
 hipMemcpy(d_B.elements, B.elements, size,
 hipMemcpyHostToDevice);

 // Allocate C in device memory
 Matrix d_C;
 d_C.width = d_C.stride = C.width; d_C.height = C.height;
 size = C.width * C.height * sizeof(float);
 hipMalloc((void**)&d_C.elements, size);
 // Invoke kernel
 dim3 dimBlock(BLOCK_SIZE, BLOCK_SIZE);
 dim3 dimGrid(B.width / dimBlock.x, A.height / dimBlock.y);
 hipLaunchKernelGGL(MatMulKernel, dim3(dimGrid), dim3(dimBlock), 0, 0, d_A, d_B,
d_C);
 // Read C from device memory
 hipMemcpy(C.elements, d_C.elements, size,
 hipMemcpyDeviceToHost);

 // Free device memory
 hipFree(d_A.elements);
 hipFree(d_B.elements);
 hipFree(d_C.elements);
}
// Matrix multiplication kernel called by MatrixMul()
__global__ void MatMulKernel(Matrix A, Matrix B, Matrix C)
{
 // Block row and column
 int blockRow = blockIdx.y;
 int blockCol = blockIdx.x;
 // Each thread block computes one sub-matrix Csub of C
 Matrix Csub = GetSubMatrix(C, blockRow, blockCol); /* STOP(called-subroutine): */
 // Each thread computes one element of Csub
 // by accumulating results into Cvalue
 float Cvalue = 0; /* MARKER(plant-after-libload): IN_KERNEL_LINE */
 // Thread row and column within Csub
 int row = threadIdx.y;
 int col = threadIdx.x;
 // Loop over all the sub-matrices of A and B that are
 // required to compute Csub
 // Multiply each pair of sub-matrices together
 // and accumulate the results
 for (int m = 0; m < (A.width / BLOCK_SIZE); ++m) {
 // Get sub-matrix Asub of A
 Matrix Asub = GetSubMatrix(A, blockRow, m);
 // Get sub-matrix Bsub of B
 Matrix Bsub = GetSubMatrix(B, m, blockCol);
 // Shared memory used to store Asub and Bsub respectively
 __shared__ float As[BLOCK_SIZE][BLOCK_SIZE];
 __shared__ float Bs[BLOCK_SIZE][BLOCK_SIZE];
 // Load Asub and Bsub from device memory to shared memory
 // Each thread loads one element of each sub-matrix
 As[row][col] = GetElement(Asub, row, col);

Sample HIP Program GPU Error Reporting 483

Debugging AMD ROCm Programs

 Bs[row][col] = GetElement(Bsub, row, col);
 // Synchronize to make sure the sub-matrices are loaded
 // before starting the computation
 __syncthreads();
 // Multiply Asub and Bsub together
 for (int e = 0; e < BLOCK_SIZE; ++e)
 Cvalue += As[row][e] * Bs[e][col];
 // Synchronize to make sure that the preceding
 // computation is done before loading two new
 // sub-matrices of A and B in the next iteration
 __syncthreads();
 }
 // Write Csub to device memory
 // Each thread writes one element
 SetElement(Csub, row, col, Cvalue);/* STOP(inlined-subroutine): */
 // Just a place to set a breakpoint in the debugger
 __syncthreads();
 __syncthreads();/* STOP: Csub should be fully updated */
}
// A function to serve as a backstop for setting breakpoints in the
// preceding kernel, so that they don't slop over to the next function.
static int breakpoint_backstop() { return 0; }
static Matrix
cons_Matrix (int width_, int height_)
{
 Matrix A;
 A.width = width_;
 A.height = height_;
 A.stride = width_;
 A.elements = (float*) malloc(sizeof(*A.elements) * width_ * height_);
 for (int row = 0; row < height_; row++)
 for (int col = 0; col < width_; col++)
 A.elements[row * width_ + col] = row * 10.0 + col;
 return A;
}
static void
print_Matrix (Matrix A, const char *name)
{
 printf("%s:\n", name);
 for (int row = 0; row < A.height; row++)
 for (int col = 0; col < A.width; col++)
 printf ("[%5d][%5d] %f\n", row, col, A.elements[row * A.stride + col]);
}
// Multiply an m*n matrix with an n*p matrix results in an m*p matrix.
// Usage: tx_cuda_matmul [m [n [p]]]
// m, n, and p default to 1, and are multiplied by BLOCK_SIZE.
int main(int argc, char **argv)
{
// hipSetDevice(0);
 const int m = BLOCK_SIZE * (argc > 1 ? atoi(argv[1]) : 1);
 const int n = BLOCK_SIZE * (argc > 2 ? atoi(argv[2]) : 1);
 const int p = BLOCK_SIZE * (argc > 3 ? atoi(argv[3]) : 1);
 Matrix A = cons_Matrix(m, n);/* MARKER(plant-after-libload): IN_MAIN_LINE */
 Matrix B = cons_Matrix(n, p);
 Matrix C = cons_Matrix(m, p);
 MatMul(A, B, C);

Sample HIP Program GPU Error Reporting 484

Debugging AMD ROCm Programs

 print_Matrix(A, "A");
 print_Matrix(B, "B");
 print_Matrix(C, "C");
 return breakpoint_backstop();
}

 485

PART VI Memory Debugging

 About TotalView Memory Debugging on page 486

 Running a Memory Debugging Session on page 502

 Memory Scripting on page 536

 Preparing Programs for Memory Debugging on page 540

486

About TotalView Memory
Debugging

 Debugging Memory in TotalView on page 487

 About Program Memory on page 488

 How TotalView Intercepts Memory Data on page 492

 Your Program’s Data on page 494

Debugging Memory in TotalView 487

About TotalView Memory Debugging

Debugging Memory in TotalView

NOTE: TotalView has long included the memory debugging features of TotalView in its Classic UI. The
new UI now includes a range of memory-related features including leak detection, heap and
event reports, and the ability to identify dangling pointers, with additional functionality added
in each release. For the full-featured functionality of TotalView, see Debugging Memory Problems
with TotalView in the Classic UI documentation in <installdir>\doc\pdf.

TotalView helps you locate many of your program’s memory problems. In most cases, TotalView creates and
records a backtrace for memory blocks, so you can immediately know where your program allocated or freed the
memory block.

For example, you can:

 Detect Leaks

TotalView can display reports of your program's memory leaks, i.e., memory blocks that are allocated and
are no longer referenced, in which case the program can no longer access the memory block, and that mem-
ory is unavailable for any other use. See Memory Leaks on page 500.

 Analyze Heap Allocations

TotalView can locate heap allocations and display related information. Heap allocations are derived from
monitoring program requests for memory (malloc or new). See Memory Heap Reports on page 511.

 Report Memory Events

A number of memory events can notify you and stop execution if you choose. For example, if a block was
previously deallocated, TotalView can stop execution and report a “double free” error. See Memory Event
Reports on page 517.

 Memory Block Notifications

You can tag specific memory blocks to have TotalView notify you when memory is allocated or freed. See
Memory Block Notification on page 521.

 Memory Debugging Options

Refine your debugging session using multiple options to help find memory problems, including painting
memory, hoarding memory blocks, and guarding allocated memory. See Memory Debugging Options on
page 523.

About Program Memory 488

About TotalView Memory Debugging

About Program Memory
When you run a program, your operating system loads the program into memory and defines an address space
in which the program can operate. For example, if your program is executing in a 32-bit computer, the address
space is approximately 4 gigabytes.

NOTE: This discussion is generally relevant to most computer architectures. For information specific
to your system, check your vendor documentation.

An operating system does not actually allocate the memory in this address space. Instead, operating systems
memory map this space, which means that the operating system relates the theoretical address space your pro-
gram could use with what it actually will be using. Typically, operating systems divide memory into pages. When a
program begins executing, the operating system creates a map that correlates the executing program with the
pages that contain the program’s information. Figure 159 shows regions of a program with arrows pointing to the
memory pages that contain different portions of your program, as well as a stack containing three stack frames,
each mapped to its own page.

Figure 159, Mapping Program Pages

About Program Memory 489

About TotalView Memory Debugging

Similarly, the heap shows two allocations, each mapped to its own page. (This illustration vastly simplifies actual
memory mapping, since a page can have many stack frames and many heap allocations.)

Figure 160 shows the compiling and linking dependencies for a program whose source code resides in four files.

Figure 160, Compiling Programs

Compiling these files creates object files, which a linker merges, along with any external libraries, into a load file.
This load file is the executable program stored on your computer’s file system.

When the linker creates the load file, it combines the information contained in each of the object files into one
unit. The load file at the bottom of Figure 160 also details this file’s contents, as this file contains a number of sec-
tions and additional information. For example:

 Data section—contains static variables and variables initialized outside of a function, for example:

int my_var1 = 10;
void main ()

About Program Memory 490

About TotalView Memory Debugging

{
 static int my_var2 = 1;
 int my_var3;
 my_var3 = my_var1 + my_var2;
 printf(“here’s what I’ve got: %i\n”, my_var3);
}
The data section contains the my_var1 and my_var2 variables. In contrast, the memory for the my_var3
variable is dynamically and automatically allocated and deallocated within the stack by your program’s run-
time system.

 Symbol table section—contains addresses to the locations of routines and variables.

 Machine code section—contains an intermediate binary representation of your program. (It is
intermediate because the linker has not yet resolved the addresses.)

 Header section—contains information about the size and location of information in all other
sections of the object file.

The linker creates one file from all these sections that can be loaded into memory, Figure 161.

Figure 161, Linking a Program

TotalView can provide information about these sections and generate a leak detection report, Figure 162.

About Program Memory 491

About TotalView Memory Debugging

Figure 162, Memory Debugging Leak Report

For information, see Memory Leak Detection on page 505.

How TotalView Intercepts Memory Data 492

About TotalView Memory Debugging

How TotalView Intercepts Memory Data
TotalView intercepts calls made by your program to heap library functions that allocate and deallocate memory
by using the malloc() and free() functions and related functions such as calloc() and realloc(). The technique it
uses is called interposition. TotalView’s interposition technology uses an agent routine to intercept calls to func-
tions in this library. This agent routine is sometimes called the Heap Interposition Agent (HIA).

You can use TotalView with any allocation and deallocation library that uses such functions as malloc() and free().
Typically, this library is called the malloc library. For example, the C++ new operator is almost always built on top
of the malloc() function. If it is,TotalView can track it. Similarly, if your Fortran implementation use malloc() and
free() functions to manage memory,TotalView can track Fortran heap memory use.

You can interpose the agent in two ways:

 TotalView can preload the agent. Preloading means that the loader places an object before the
object listed in the application’s loader table.

When a routine references a symbol in another routine, the linker searches for that symbol’s definition.
Because the agent’s routine is the first object in the table, your program invokes the agent’s routine instead
of the routine that was initially linked in.

On Linux and Sun, TotalView sets an environment variable that contains the pathname of the agent’s shared
library. For more information, see Using env to Insert the HIA.

 If TotalView cannot preload the agent, you will need to explicitly link it into your program. For
details, see Linking Your Application with the HIA.

If your program attaches to an already running program, you must explicitly link this other program with the
agent.

After the agent intercepts a call, it calls the original function. This means that you can use TotalView with most
memory allocators. Figure 163 shows how the agent interacts with your program and the heap library.

How TotalView Intercepts Memory Data 493

About TotalView Memory Debugging

Figure 163, Interposition

Because TotalView uses interposition, memory debugging can be considered non-invasive. That is,TotalView
doesn’t rewrite or augment your program’s code, and you don’t have to do anything in your program. Because the
agent lives in the user space, it will add a small amount of overhead to the program’s behavior, but it should not
be significant.

Your Program’s Data The Data Section 494

About TotalView Memory Debugging

Your Program’s Data
Your program’s data resides in the following places:

 The Data Section

 The Stack

 The Heap

The Data Section

Your program uses the data section for storing static and global variables. Memory in this section is permanently
allocated, and the operating system sets its size when it loads your program. Variables in this section exist for the
entire time that your program executes.

Errors can occur if your program tries to manage this section’s memory. For example, you cannot free memory
allocated to variables in the data section. In general, data section errors are usually related to misunderstandings
regarding the program’s inability to manage data section memory.

The Stack
Memory in the stack section is dynamically managed by your program or operating system’s memory manager.
Consequently, your program cannot allocate memory in the stack or deallocate memory in it.

NOTE: “Deallocates” means that your program reports to a memory manager that it is no longer
using this memory. The next time your program calls a routine, the new stack frame over-
writes the memory previously used by other routines. In almost all cases, deallocated
memory, whether on the stack or the heap, just hangs around in its pre-deallocation state
until it gets reassigned.

The stack differs from the data section in that your program implicitly manages its space. What’s in it one minute
might not be there a minute later. Your program’s runtime environment allocates memory for stack frames as
your program calls routines, and deallocates these frames when execution exits from the routine.

A stack frame contains control information, data storage, and space for passed-in arguments (parameters) and
the returned value (and much more). Figure 164 shows three ways in which a compiler can arrange stack frame
information.

Your Program’s Data The Stack 495

About TotalView Memory Debugging

Figure 164, Placing Parameters

In this figure, the left and center stack frames have different positions for the parameters and returned value. The
stack frame on the right is a little more complicated. In this version, the parameters reside in a stack memory area
that doesn’t belong to either stack frame.

If a stack frame contains local (sometimes called automatic) variables, where is this memory placed? If the routine
has blocks in which memory is allocated, where on the stack is this memory for these additional variables placed?
Although there are many variations, Figure 165 shows two of the more common ways to allocate memory.

Figure 165, Local Data in a Stack Frame

The blocks on the left show a data block allocated within a stack frame on a system that ignores your routine’s
block structure. The compiler figures how much memory your routine needs, and then allocates enough memory
for all of a routine’s automatic variables. These kinds of systems minimize the time necessary to allocate memory.

Your Program’s Data The Stack 496

About TotalView Memory Debugging

Other systems dynamically allocate the memory required within a routine as the block is entered, and then deal-
locate it as execution leaves the block. (The blocks on the right show this.) These systems minimize a routine’s
size.

As your program executes routines, routines call other routines, placing additional routines on the stack. Figure
166 shows four stack frames. The shaded areas represent local data.

Figure 166, Four Stack Frames

What happens when a program passes a pointer to memory in a stack frame to lower frames? Figure 167 shows
a program passing a pointer to memory in stack frame 1 down to lower stack frames.

Figure 167, Passing Pointers

Here, the arrows on the left represent an address contained within a pointer, an address that is passed down the
stack. The lines and arrow on the right indicate the place to which the pointer is pointing. A pointer to memory in
frame 1 is passed to frame 2, which passes the pointer to frame 3, and then to frame 4. In all frames, the pointer
points to a memory location in frame 1. Stated in another way, the pointers in frames 2, 3, and 4 point to memory
in another stack frame. This is the most efficient way for your program to pass data from one routine to another,
since your program passes the pointer instead of the actual data. Using the pointer, the program can both access
and alter the information that the pointer is pointing to.

Your Program’s Data The Stack 497

About TotalView Memory Debugging

NOTE: We know that data can be passed “by-value” (which means copying it) or “by-reference” (which
means passing a pointer), but it’s important to remember that something is always copied,
because “pass by reference” copies a pointer to the data.

Because the program’s runtime system owns stack memory, you cannot free it. Instead, your program’s runtime
system frees it when it pops a frame from the stack.

One of the reasons that memory problems occur is that it may not be clear which component owns a variable’s
memory. For example, Figure 168 shows a routine in frame 1 that has allocated memory in the heap, and which
passes a pointer to that memory to other stack frames.

Figure 168, Allocating a Memory Block

If the routine executing in frame 4 frees this memory, all pointers to that memory are dangling; that is, they point
to deallocated memory. If the program’s memory manager reallocates this heap memory block, the data accessi-
ble by all the pointers is both invalid and wrong. Note that if the memory manager doesn’t immediately reuse the
block, the data accessed through the pointers is still correct.

The timing of the reallocation and reuse of a block by another allocation request means there is no guarantee
that the data is correct when the program accesses the block, and there is never a pattern to when the block’s
data changes. Consequently, the problem occurs only intermittently, which makes it nearly impossible to locate.
Worse, development systems usually are not as memory stressed as production systems, so the problem may
occur only in the production environment.

Another common problem occurs when you allocate memory and assign its location to an automatic variable,
shown in Figure 169.

Your Program’s Data The Stack 498

About TotalView Memory Debugging

Figure 169, Allocating a Block from a Stack Frame

If frame 4 returns control to frame 3 without deallocating the heap memory it created, this memory is no longer
accessible, and your program can no longer use this memory block. It has leaked this memory block.

NOTE: If you have trouble remembering the difference between a leak and a dangling pointer, Figure
170 may help. In both cases, your program allocates heap memory, and the address of this
memory block is assigned to a pointer. A leak occurs when the pointer gets deleted, leaving a
block with no reference. In contrast, a dangling pointer occurs when the memory block is deal-
located, leaving a pointer that points to deallocated memory. Both are shown here.

Figure 170, Leaks and Dangling Pointers

TotalView can report your program’s leaks. For information on detecting leaks, see Memory Leak Detection.

Your Program’s Data The Heap 499

About TotalView Memory Debugging

The Heap
The heap is an area of memory that your program uses when it wants to dynamically allocate space for data.
While using the heap gives you a considerable amount of flexibility, your program must manage this resource.
That is, the program must explicitly allocate and deallocate this space. In contrast, the program does not allocate
or deallocate memory in other areas.

Because allocations and deallocations are intimately linked with your program’s algorithms and, in some cases,
the way the program uses this memory is implicit rather than explicit, problems associated with the heap are the
hardest to find.

Finding Heap Allocation Problems

Memory allocation problems are seldom due to allocation requests. Because an operating system’s virtual mem-
ory space is large, allocation requests usually succeed. Problems most often occur if you are either using too
much memory or leaking it. Although problems are rare, you should always check the value returned from calls to
allocation functions such as malloc(), calloc(), and realloc(). Similarly, you should always check whether the C++
new operator returns a null pointer. (Newer C++ compilers throw a bad_alloc exception.) If your compiler sup-
ports the new_handler operator, you can throw your own exception.

Finding Heap Deallocation Problems

TotalView can let you know when your program encounters a problem in deallocating memory. Some of the
problems it can identify are:

 free() not allocated: An application calls the free() function by using an address that is not in a
block allocated in the heap.

 realloc() not allocated: An application calls the realloc() function by using an address that is not
in a block allocated in the heap.

 Address not at start of block: A free() or realloc() function receives a heap address that is not at
the start of a previously allocated block.

If a library routine uses the program’s memory manager (that is, it is using the heap API) and a problem occurs,
TotalView still locates the problem. For example, the strdup() string library function calls the malloc() function to
create memory for a duplicated string. Since the strdup() function is calling the malloc() function, TotalView can
track this memory.

TotalView can stop execution just before your program misuses a heap API operation, which allows you to see
what the problem is before it actually occurs. (See How TotalView Intercepts Memory Data.)

Your Program’s Data The Heap 500

About TotalView Memory Debugging

realloc() Problems

The realloc() function can either extend a current memory block, or create a new block and free the old. When it
creates a new block, it can create problems. Although you can check to see which action occurred, you need to
code realloc() usage defensively so that problems do not occur. Specifically, you must change every pointer
pointing to the memory block that was reallocated so that it points to the new one. Also, if the pointer doesn’t
point to the beginning of the block, you need to take some corrective action.

In Figure 171, two pointers are pointing to a block. After the realloc() function executes, ptr1 points to the new
block. However, ptr2 still points to the original block, a block that a program deallocated and returned to the
heap manager.

Figure 171, realloc() Problem

Memory Leaks

A memory “leak” describes a block of memory that a program allocates that is no longer referenced. For example,
when your program allocates memory, it assigns the block’s location to a pointer. A leak can occur in one of the
following cases:

 You assign a different value to that pointer.

 The pointer was a local variable and execution exited from the block.

If your program leaks a lot of memory, it can run out of memory. Even if it doesn’t run out of memory, your pro-
gram’s memory footprint becomes larger. This increases the amount of paging that occurs as your program
executes, making your program run more slowly.

Your Program’s Data The Heap 501

About TotalView Memory Debugging

Here are some of the circumstances in which memory leaks occur:

 Orphaned ownership—Your program creates memory but does not preserve the address so that
it can deallocate it at a later time.

Consider this example:

char *str;
for(i = 1; i <= 10; i++)
{
 str = (char *)malloc(10*i);
}
free(str);
In the loop, your program allocates a block of memory and assigns its address to str. However, each loop
iteration overwrites the address of the previously created block. Because the address of the previously allo-
cated block is lost, its memory can never be made available to your program.

 Concealed allocation—Creating a memory block is separate from using it.

Because all programs rely on libraries in some fashion, programmers are responsible for allocating and man-
aging memory. As an example, contrast the strcpy() and strdup() functions. Both do the same thing—they
copy a string. However, the strdup() function uses the malloc() function to create the memory it needs,
while the strcpy() function uses a buffer that your program creates.

In many cases, your program receives a handle from a library. This handle identifies a memory block that a
library allocated. When you pass the handle back to the library, it knows which memory block contains the
data you want to use or manipulate. There may be a considerable amount of memory associated with the
handle, and deleting the handle without telling the library to deallocate the memory associated with the
handle leaks memory.

 Changes in custody—The routine creating a memory block is not the routine that frees it. (This is
related to concealed allocation.)

For example, routine 2 asks routine 1 to create a memory block. At a later time, routine 2 passes a reference
to this memory to routine 3. Which of these blocks is responsible for freeing the block?

This type of problem is more difficult than other types of problems in that it is not clear when your program
no longer needs the data. The only thing that seems to work consistently is reference counting. In other
words, when routine 2 gets a memory block, it increments a counter. When it passes a pointer to routine 3,
routine 3 also increments the counter. When routine 2 stops executing, it decrements the counter. If it is
zero, the executing routine frees the memory. If it isn’t zero, another routine frees it at another time.

 Underwritten destructors—When a C++ object creates memory, it must have a destructor that
frees it. No exceptions. This doesn’t mean that a block of memory cannot be allocated and used as
a general buffer. It just means that when an object is destroyed, it needs to completely clean up
after itself; that is, the program’s destructor must completely clean up its allocated memory.

502

Running a Memory Debugging
Session

 Starting Memory Debugging in TotalView on page 503

 Memory Leak Detection on page 505

 Memory Heap Reports on page 511

 Corrupt Guard Block Reports on page 514

 Memory Event Reports on page 517

 Memory Block Notification on page 521

 Memory Debugging Options on page 523

 Dangling Pointer Problems on page 534

Starting Memory Debugging in TotalView 503

Running a Memory Debugging Session

Starting Memory Debugging in TotalView
On most architectures, there is little you need to do to prepare your program for memory debugging. In most
cases, just compile your program using the -g command-line option. In some cases, you may need to link your
program with the TotalView’s Heap Interposition Agent (HIA). (See How TotalView Intercepts Memory Data and
Linking Your Application with the HIA for more information.)

NOTE: TotalView must be able to preload your program with its HIA. In many cases, it does this auto-
matically. However, it cannot preload the HIA for applications that run on IBM RS/6000
platforms. For more information, see Linking Your Application with the HIA.

For more general information on preparing programs to debug memory issues, including plat-
form-specific details, see Preparing Programs for Memory Debugging.

To start debugging memory in TotalView:

1. Start TotalView and load a debugging session in the normal way.

See Starting TotalView and Creating a Debugging Session for detail.

2. Enable Memory Debugging, in these ways:

 Before starting your program, check “Enable memory debugging” in the Debug Options sec-
tion of the Session Editor.

Starting Memory Debugging in TotalView 504

Running a Memory Debugging Session

 From the Debug menu, check Enable Memory Debugging.

 From the memory toolbar, by selecting the Enable memory debugging icon:

Whenever your program is stopped—which happens when you halt the program, when a memory problem
occurs, or just before the program exits—TotalView can create a report that describes leaks.

Memory Leak Detection 505

Running a Memory Debugging Session

Memory Leak Detection
TotalView can locate your program’s memory leaks and display related information. For an overview of memory
leaks in general, see Memory Leaks.

Leaks are reported in the Leak Report view. To generate a leak report, either:

 Respond to the Leak Report prompt before the program exits:

Run the program and then halt it when you want to look at memory problems. (Allow your program to run
for a while before stopping execution to give it enough time to create leaks.)

If your program runs to the end without stopping for a breakpoint or other reason, and memory debugging
is enabled, a prompt displays before the program exits, asking if you want to create a link report.

Clicking Yes generates the report.

or

 Use the Debug menu

Select Debug > Generate Leak Report.

At launch, the Leak Report displays in the UI’s central area, Figure 172.

Memory Leak Detection Using the Leak Report 506

Running a Memory Debugging Session

Figure 172, Leak Report, initial view

For the best viewing, detach the report and dock it beside any open source window to view the code and the
report side-by-side, as suggested when it initially displays. This enables you to examine source level details as you
explore the report’s leak data.

Using the Leak Report
The Leak Report is based on the process in focus and includes two panes: at the top are the program’s files; at the
bottom is the Backtrace pane. All entries in the Program pane identify memory leaks in the program. To locate the
problems:

1. Drill down to identify the block in which each leak resides, Figure 173.

Figure 173, Leak Report: the Program Pane

Note that:

 This example program has a process that contains a single file with three memory leaks
(identified by the Count column), at lines 36, 27, and 26.

Memory Leak Detection Using the Leak Report 507

Running a Memory Debugging Session

 The Bytes column displays the number of bytes that have been lost to leaks.

 The Update button is grayed-out because the report is up to date. This will become active if
the program continues to run past this point.

2. Select the block to analyze, which populates the Backtrace pane with the line of code where the memory
was initially allocated.

Figure 174, Leak Report, Backtrace pane

The Backtrace is not the active backtrace (which is that displayed in the Call Stack view); rather, it is the back-
trace that existed when your program made the heap allocation request. It identifies the block number, the
function name, line number, and filename.

Selecting a different entry in the top pane refocuses the Backtrace pane.

You can also navigate directly to the source code location of the leak from the Program pane by selecting
the Line entry:

3. Select the function in the Backtrace pane to highlight its location in the source code.

Memory Leak Detection Using the Leak Report 508

Running a Memory Debugging Session

Figure 175, Leak Report, source pane

TotalView uses a conservative approach to finding memory leaks, searching roots from the stack, registers, and
data sections of the process for references into the heap. Although leaks will not be falsely reported, some leaks
may be missed. If you are within a method that has leaks, you may need to step out of the method for the leak to
be reported. In addition, leak detection may be sensitive to the compiler used to build the program.

Updating the Leak Report

If you are stepping through your code or it has stopped at a breakpoint, the Leak Report view does not update
automatically. At this point, the Update button becomes active, and selecting it will update the report.

MPI Programs and Leak Reports

If you are debugging an MPI program, it has ranks, rather than processes. A generated leak report will be based
on the rank in focus. For example, the report in Figure 176 is based on rank 2.

Memory Leak Detection Using the Leak Report 509

Running a Memory Debugging Session

Figure 176, Leak Reports for MPI Programs

In this example, there are three libraries displayed in the upper pane. Opening one library reveals multiple leaks
in the Backtrace.

You can generate multiple reports, one for each rank, Figure 177:

Memory Leak Detection Using the Leak Report 510

Running a Memory Debugging Session

Figure 177, Multiple Leak Reports display

Memory Heap Reports Using the Leak Report 511

Running a Memory Debugging Session

Memory Heap Reports
TotalView can locate heap allocations and display related information. Heap allocations are derived from moni-
toring program requests for memory (malloc or new).

Heap allocations are reported in the Heap Report view. To generate a heap report, enable memory debugging
(Debug > Enable Memory Debugging), then run your program either to the end or to a breakpoint.

Select Debug > Generate Heap Report.

(Note that, when memory debugging is enabled and your program runs to the end without stopping for a break-
point or other reason, a prompt displays before the program exits, asking if you want to create a Leak Report. A
Heap Report is not dependent on a Leak Report so you may click No.)

The Heap Report displays docked in its own pane by default, Figure 178, or as a tab next to the Leak Report if
there is one open.

Figure 178, Heap Report, initial view

Memory Heap Reports Using the Heap Report 512

Running a Memory Debugging Session

Using the Heap Report
Similar to the Leak Report, the Heap Report is based on the process in focus and includes two panes: at the top
are the program’s files; at the bottom is the Backtrace pane. All entries in the Program pane identify memory allo-
cations in the program. To locate the allocations:

1. Drill down to identify the block in which each memory allocation resides, Figure 179.

Figure 179, Heap Report: the Program Pane

Note that:

 This example program has a process that contains three separately-allocated memory blocks
(identified by the Count column), two allocated by the program at lines 27 and 26.

 The report is based on p1, or Process 1. If this program had multiple processes, focusing on
another process would generate a separate Heap Report.

 The Bytes column displays the number of bytes of allocated memory, rounded.

 The Update button is grayed-out because the report is up to date. This will become active if
the program continues to run past this point.

2. Select the block to analyze, which populates the Backtrace pane with the line of code where the memory
was initially allocated, and focuses on the relevant line of code in the source pane:

Memory Heap Reports Using the Heap Report 513

Running a Memory Debugging Session

Figure 180, Heap Report, Backtrace pane and source

Like the Leak Report, you can navigate from both the Backtrace pane and the program pane to the relevant
line in the source pane.

The Memory Report backtrace reflects the backtrace that existed when your program made the heap allo-
cation request. The backtrace ID helps associate each block of code allocated from this line.

There is a distinction between backtraces associated with the statement and the statement in your program
that allocates memory. Suppose you have a function called create_list(). This function could be called from
many different places in your code, and each location will have a separate backtrace. For example, if
create_list() is called from eight different places and each was called five times, there would be eight differ-
ent backtraces (and eight different backtrace IDs) associated with it. Each individual backtrace would have
five items associated with it.

Updating the Heap Report

If you are stepping through your code or it has stopped at a breakpoint, the Heap Report view does not update
automatically. At this point, the Update button becomes active, and selecting it will update the report.

Corrupt Guard Block Reports Using the Heap Report 514

Running a Memory Debugging Session

Corrupt Guard Block Reports
When your program allocates a memory block, no data should be written outside the block. For instance, an allo-
cation of 16 bytes could not accommodate 32 bytes of information, as that data would write over the information
in the next block, corrupting it.

If you enable guard blocks—by selecting the option “Guard Allocated Memory” either in the Session Editor or
from the Debug menu—TotalView writes small blocks of information before and after all blocks that your pro-
gram allocates. These additional blocks are called guard blocks and are 8 bytes of memory initialized with a
specific bit pattern (although this can be customized). See Enabling and Configuring Guard Blocks for details.

If your program writes data into either of the guard blocks, it will result in corrupted data. View these corrupt
memory blocks in two ways:

 By enabling the option Debug > Stop on Memory Events, which will halt your program and
produce an event report when memory that has been overwritten is deleted. See Example:
Viewing a Guard Corruption Event Report for detail.

 By running a Corrupt Guard Block Report, which reports all corrupt guard blocks in your
program.

To run a Corrupt Guard Block Report, stop your program and choose Debug > Corrupt Guard Block Report, or

press the memory toolbar button () “Generate a Corrupt Guard Block report”.

The report opens, displaying the files, the methods, and the specific lines in which any corrupted guard block
exists. Like other reports, selecting an entry in the top pane focuses the Backtrace pane and the Source pane on
that line.

Corrupt Guard Block Reports Using the Heap Report 515

Running a Memory Debugging Session

NOTE: Remember that this report displays where the guard blocks were allocated; it cannot actually
identify where the overwrite occurred in your program. Strategies for locating the overwrite
would entail rerunning your program and focusing on the block where the corrupt memory
occurred. In addition, you might use watchpoints and ReplayEngine together by placing a
watchpoint on the corrupt guard block address and then playing your program backward to
the location where the watchpoint is triggered.

Figure 181, Corrupt Guard Block Report

Drill down into the line in the top pane to see detail about the memory block, whether the pre- or post-guard
blocks were overwritten, or both.

Corrupt Guard Block Reports Using the Heap Report 516

Running a Memory Debugging Session

Figure 182, Corrupt Guard Block Report, viewing detail

Updating the Report

If you are stepping through your code or it has stopped at a breakpoint, the Corrupt Guard Block Report does not
update automatically. At this point, the Update button becomes active; select it to update the report.

Memory Event Reports Using the Heap Report 517

Running a Memory Debugging Session

Memory Event Reports
A number of memory events can notify you and stop execution if you choose. For example, if the block was previ-
ously deallocated, TotalView can stop execution and report a “double free” error.

Table 16 lists all possible events for which you can receive notifications.

Table 16: Memory Events Logged by TotalView

Error Description

API usage error Incorrect API or API instance used in operation.

Allocation failed Memory allocation failed.

Double free Attempt to free a block that was already freed.

Free interior pointer Attempt to free a block, but the address points into the interior of the allo-
cated block rather than the address returned when the block was
allocated.

Free notification The user requested to stop the program when memory was freed.

Free unknown block Attempt to free a non-allocated block.

Guard corruption Attempt to free a block, but the guard blocks surrounding it have been
altered. This indicates that your program wrote data where it should not
have.

Invalid aligned allocation request Supplied a bad address to a malloc routine.

Misaligned allocation The block returned by the malloc library is not aligned on a byte boundary
required by your operating system. The heap may be corrupted. (This is not
a program error.)

Realloc notification The user requested to stop the program when this block was reallocated.

Realloc unknown block Attempt to reallocate an unallocated block.

Red Zone overrun error Attempt to read or write past the end of your allocated block.

Red Zone overrun error on deallo-
cated block

Attempt to read or write past the end of your deallocated block.

Red Zone underrun error Attempt to read or write before the start of your allocated block.

Red Zone underrun error on deal-
located block

Attempt to read or write before the start of your deallocated block.

Red Zone use-after-free error Attempt to access a block after it has been deallocated.

Memory Event Reports The Memory Event Report View 518

Running a Memory Debugging Session

NOTE: Events that are controlled via a separate setting are not yet supported in the UI. For more
detail, see dheap in the TotalView Reference Guide.

The Memory Event Report View
Memory events are logged in the Event Report view. To stop your program for memory errors and generate an
event report, enable memory debugging (Debug > Enable Memory Debugging), then choose Debug > Stop on
Memory Events.

When a memory error occurs, TotalView stops your program and launches the Event Report view to display the
error(s).

If you close the view during a debugging session, reopen it by choosing Debug > Memory Event Report.

The Event Report view reports the error (in this example, a double free allocation error) and its block address. The
view’s Backtrace pane provides detail on the location of the error, as well as where it was allocated or deallocated,
Figure 183.

Termination notification User has requested to halt before the program exits.

Unknown error An error unknown to TotalView has occurred.

Table 16: Memory Events Logged by TotalView

Error Description

Memory Event Reports The Memory Event Report View 519

Running a Memory Debugging Session

Figure 183, The Memory Event view

To locate the error, open the Event Location dropdown, which highlights the location of the error. Selecting the
error in the dropdown displays the location of the error in the Source view.

Figure 184, Memory Event Report, Event Location

Memory Event Reports The Memory Event Report View 520

Running a Memory Debugging Session

Additional information is available via the Allocation and Deallocation dropdowns in the Backtrace, Figure 185.

Figure 185, Memory Event Report, backtrace pane

These dropdowns identify the lines at which any memory was allocated and deallocated in the program. Selecting
a line in the backtrace displays that line in the Source view.

Memory Block Notification The Memory Event Report View 521

Running a Memory Debugging Session

Memory Block Notification
When a specific block of memory has been freed but your program tries to access that memory later through a
dangling pointer reference, the result can be invalid data that causes sporadic crashes or data problems whose
cause can be hard to pinpoint. To help identify these kinds of memory problems, you can set TotalView to watch a
specific allocated memory block and then raise an event when the memory is freed or deleted.

To tag a specific memory block, run to a location in your code and examine a pointer variable in either the Local
Variable view or Data View. Dereference the pointer, then right click on it, and select Notify on Free or Realloc
from the context menu.

Figure 186, Memory blocks, “Notify on Free or Realloc”

A checkbox displays next to the context menu entry, and the variable’s entry in the Data View or Local Variables
view reports that notifications are turned on for this variable:

When a tagged block of memory is freed or reallocated, the Event Report opens, displaying the exact location
where the memory was both initially allocated and freed.

Memory Block Notification The Memory Event Report View 522

Running a Memory Debugging Session

Figure 187, Memory blocks, Event Report

Memory Debugging Options The Memory Event Report View 523

Running a Memory Debugging Session

Memory Debugging Options
Several memory debugging options are available to refine your debugging session. Set these either in the Session
Editor before starting your debugging session or from within a debugging session using the menu item Debug >
Memory Options or by selecting the icon “Enable memory debugging” from the memory toolbar.

Available options are:

 Option: Painting Memory on page 524

 Option: Hoarding Memory Blocks on page 526

 Option: Guarding Allocated Memory on page 529

In the Session Editor, choose the settings icon to configure individual options:

Figure 188, Memory Options Available from the Session Editor

From within a debugging session, first choose Debug > Enable Memory Debugging, then Memory Options to
open the Memory Options dialog:

Memory Debugging Options Option: Painting Memory 524

Running a Memory Debugging Session

Figure 189, Memory Options Available from the Debug Menu and the Memory Toolbar

CLI Commands

In the CLI, the dheap command controls memory debugging behavior, including memory options. For more
detail, see dheap in the TotalView Reference Guide.

Option: Painting Memory
Your program may be using memory either before it is initialized or after it is deallocated. TotalView can help
identify these kinds of problems by initializing allocated or deallocated memory to a bit pattern. This is called
painting. Recognizing this bit pattern can help more quickly identify the problem.

Painting memory blocks is useful in:

 Identifying the use of uninitialized or deallocated memory. The bit pattern immediately tells you
that memory is either allocated or deallocated.

 Ensuring consistency for multiple users, i.e., if a program works for some users and not for others,
it will be clear if uninitialized or deallocated memory is the problem.

 Changing your program’s behavior if it is not using memory correctly, which can help in identifying
the problem. In addition, it may correct the problem so that the program doesn’t appear to fail.

 Forcing an error such as a crash to occur, which can in turn help you identify the problem.

Memory Debugging Options Option: Painting Memory 525

Running a Memory Debugging Session

 Finding initialized memory by searching for the bit pattern to ensure all memory was correctly
initialized.

NOTE: You can separately enable allocations and deallocations, and you can turn painting on and off
without restarting your program.

Enabling and Configuring Painting

Enable memory painting from either the Program Session page in the Session Editor or from the Debug menu
after your debugging session has started.

Figure 190, Enabling Memory Painting in the Session Editor

To customize the pattern used for painting, select the options () icon to open the Painting Options dialog:

 Paint allocations pattern:

The default is 0xa110ca7f, chosen for its resemblance to the word “allocate.”

 Paint deallocations pattern:

The default is 0xdea110cf, chosen for its resemblance to the word “deallocate.”

Memory Debugging Options Option: Hoarding Memory Blocks 526

Running a Memory Debugging Session

Example: Viewing Painted Memory

If you turn on memory block painting before starting your program, you’ll be ready to observe memory being allo-
cated or deallocated. For example, the variable addr has not yet been allocated:

After allocation, note the bit paint value:

NOTE: To identify exactly when a program has allocated or deallocated memory, change the deallo-
cation pattern during a debugging session. This will show you memory allocated or
deallocated before or after the bit pattern changed, so you can isolate the point in your pro-
gram when it occurred.

Option: Hoarding Memory Blocks
When your program deallocates memory, it’s possible that a pointer still points to the deallocated block. If your
program then tries to access that block, the data can become corrupt. To give you more options to identify prob-
lems like dangling pointers or other issues with deallocation, you can hoard memory blocks.

Hoarding memory simply means that TotalView doesn’t immediately release memory that has been deallocated;
instead, it records the size of the block that would have been deallocated, and your program can continue access-
ing that memory for a defined amount of time.

Memory Debugging Options Option: Hoarding Memory Blocks 527

Running a Memory Debugging Session

How Hoarding Works

TotalView holds on to hoarded blocks for a specific amount of time before returning them to the heap manager
for reuse. As TotalView adds blocks to the hoard, it places them in a first-in, first-out list. When the hoard is full,
TotalView releases the oldest blocks back to your program’s memory manager.

When hoarding is turned on, deallocated memory isn’t available to be overwritten by your program, which allows
your program to continue running normally even though it might be accessing memory that should have been
deallocated. This can help uncover related errors, and these errors can help you track down the problem.

For example, if you are both painting memory and hoarding deallocated memory, you might be able to force an
error when your program accesses the painted memory.

Consider a couple of examples.

Finding a Multithreaded Problem

When a multithreaded program shares memory, problems can occur if one thread deallocates a memory block
while another thread is still using it. Because threads execute intermittently, these kinds of deallocation problems
may not be immediately apparent. If you hoard memory, however, the memory stays available for longer because
it cannot be reused immediately.

In this case, if intermittent program failures stop occurring, you’ll be able to identify the problem more easily.

One advantage of this technique is that you can relink your program (see Linking Your Application with the HIA)
and then run TotalView against a production program that was not compiled using the -g compiler debugging
option. If you see instances of the hoarded memory, you’ll instantly know problems have occurred.

This technique often requires that you increase the number of blocks being hoarded and the hoard size.

Finding Dangling Pointer References

Hoarding is most often used to find dangling pointer references. Once you know the problem is related to a dan-
gling pointer, you need to locate where your program deallocated the memory. One technique is to use block
tagging (see Memory Block Notification) to stop execution when memory is allocated or deallocated. Another is
to use block painting (see Option: Painting Memory to write a pattern into deallocated memory. If you also hoard
painted memory, the heap manager cannot reallocate the memory as quickly.

For example, if the memory were not hoarded, the heap manager could reallocate the memory block at which
point a program can legitimately use the block, changing the data in the painted memory. If this occurs, the block
is both legitimately allocated and its contents are legitimate in some context. However, the older context was
destroyed. Hoarding delays the recycling of the block. In this way, it extends the time available for you to detect
that your program is accessing deallocated memory.

Memory Debugging Options Option: Hoarding Memory Blocks 528

Running a Memory Debugging Session

Enabling and Configuring Hoarded Memory

Enable memory hoarding from either the Program Session page in the Session Editor or from the Debug menu
after your debugging session has started.

The option available from the Debug menu also reports hoard status, once your program is running:

 Maximum KB to hoard:

The default is 256 KB. To hoard all deallocated memory, enter 0, which will then display “Unlimited.”

 Maximum blocks to hoard:

The default is 32 blocks. Enter 0 to hoard an unlimited number of blocks.

 Automatically release blocks when memory gets low:

If choosing “Unlimited” in the above options, consider also selecting this option to prevent or delay your pro-
gram running out of memory.

Warn when hoard size drops below:

If blocks are automatically being released for low memory, you can also choose to have TotalView warn you
if the hoard size drops below a certain number, in which case TotalView halts execution and notifies you. You
can then view a heap or leak report to see where your memory is being allocated. Choose this option, then
enter a value, for example:

 Hoard Status:

Reports the block hoarding status as your program runs.

Memory Debugging Options Option: Guarding Allocated Memory 529

Running a Memory Debugging Session

Example: Hoarding Memory

Consider this program in which the maximum blocks to hoard and their size has been set to “unlimited,” along
with a warning when hoard size drops below 6,000 KB. During program execution, if the hoard threshold is
crossed, a memory event is written to the Event Report:

In addition, the Memory Options dialog reports hoard status:

Option: Guarding Allocated Memory
When your program allocates a memory block, any data written outside of the block results in data corruption.

To quickly identify instances in which your program may be incorrectly writing data either before or after a block,
use guard blocks. Guard blocks are small blocks of additional memory created just before and after an allocated
block. At initialization, TotalView writes a bit pattern into these guard blocks so you can quickly see if they are
overwritten or corrupted via a memory event report or event notification.

Memory Debugging Options Option: Guarding Allocated Memory 530

Running a Memory Debugging Session

Enabling and Configuring Guard Blocks

Enable allocated memory blocks from either the Program Session page in the Session Editor or from the Debug
menu after your debugging session has started.

Figure 191, Guard Allocated Memory configuration

 Pre-Guard:

The size of the pre-guard block and its pattern. The default is 0x77777777.

By default, each guard block uses 8 bytes of memory.

 Post-Guard:

The size of the post-guard block and its pattern. The default is 0x99999999.

 Maximum Guard:

The maximum size for the guard blocks. Because different operating systems align information differently,
setting a maximum size here can ensure that blocks don’t use an excessive amount of memory, if memory
is tight.

The default is 0, in which no maximum size is set.

Example: Viewing a Guard Corruption Event Report

You can view corrupted guard blocks in your program in two ways:

 The guard corruption event report discussed in this section. This is a memory event generated
when a specific corrupted block of memory is deleted.

 The Corrupt Guard Block Report, which lists all known blocks of memory with corrupted guard
blocks. See Corrupt Guard Block Reports for detail.

Memory Debugging Options Option: Guarding Allocated Memory 531

Running a Memory Debugging Session

When guard blocks are enabled, you’ll want to choose to generate a memory event report by selecting Debug >
Stop on Memory Events from the menu (see Memory Event Reports) for the types of memory events that pro-
duce an event report.

If your program has overwritten memory and guard blocks are enabled, TotalView generates an event report
when the memory is deleted, for example:

Figure 192, Memory Event Report on Guard Corruption

In this case, TotalView has identified a corrupt post-guard block at memory deallocation, with the following
information:

 Block Status:

The current status of this block is “allocated” at 1,000 bytes.

 Pre Guard Status:

The previous status was uncorrupted, at 16 bytes.

 Post Guard status:

The status is now corrupted, as it has been allocated with 1,000 bytes, overwriting the 16 bytes it previously
had and corrupting memory outside of its allocation.

To find more information about this piece of memory, drill down into the Backtrace pane at the bottom of the
event report:

Memory Debugging Options Option: Guarding Allocated Memory 532

Running a Memory Debugging Session

Figure 193, Guard corruption event report, backtrace, deallocation event

The Event Location dropdown in the Backtrace pane highlights the location of the deallocation, which occurred in
main(). When selected, the focus in the Source view changes to the line where deallocation occurred.

To see the allocated block, drill down under Allocation in the Backtrace pane.

Memory Debugging Options Option: Guarding Allocated Memory 533

Running a Memory Debugging Session

Figure 194, Guard corruption event report, backtrace, allocation event

Here, note that the 1,000 bytes allocated in main, line 33, were subsequently overwritten, resulting in a corrupt
guard.

Because you now know which block was corrupted, you can begin to locate where the overwrite occurred. In
many cases, you will rerun your program, focusing on those blocks.

Dangling Pointer Problems Dangling Pointers in the Local Variables and Data Views 534

Running a Memory Debugging Session

Dangling Pointer Problems

Fixing dangling pointer problems is usually more difficult than fixing other memory problems. First of all, you
become aware of them only when you realize that the information your program is manipulating isn’t what it is
supposed to be. Even more troubling, these problems can be intermittent, happening only when your program’s
heap manager reuses a memory block. For example, if nothing else is running on your computer, your program
may never reuse the block. If there are a large number of jobs running, it could reuse a deallocated block quickly.

After you identify that you have a dangling pointer problem, you have two problems to solve. The first is to deter-
mine where your program freed the memory block. The second is to determine where it should free this memory.

When memory debugging is enabled, TotalView identifies dangling pointers in the Local Variable view and the
Data View. You can also tag specific memory blocks so you are notified when memory is allocated or freed. See
Memory Block Notification.

Dangling Pointers in the Local Variables and Data Views
If you enable memory debugging, TotalView displays information in the Local Variables view about the variable’s
memory status; that is, whether the memory is allocated or deallocated. The following small program allocates a
memory block, sets a pointer to the start of the block, and then deallocates the block:

main(int argc, char **argv)
{
 int *addr = 0; /* Pointer to start of block. */

 addr = (int *) malloc (10 * sizeof(int));

 /* Deallocate the block. addr is now dangling. */
 free (addr);
/* Add some data to the array */
 addr[0] = 1;
 addr[1] = 2;
 ...
}
Figure 195 shows the Local Variables view. In the top view, execution was stopped before your program executed
the free() function. Note the memory indicator reporting that blocks are allocated.

Dangling Pointer Problems Dangling Pointers in the Local Variables and Data Views 535

Running a Memory Debugging Session

Figure 195, Pointer allocated, then dangling

After your program executes the free() function, the message changes to “Dangling.”

If you drag the variable from the Local Variables view to the Data View, it also displays the memory indicator:

536

Memory Scripting

You can execute memory debugging in batch mode using the memscript command and its options, like so:

memscript command_line_options

display_specifiers Command-Line Option
 -display_specifiers controls information written to the log file.

-display_specifiers “list_item”

Specifies one or more items that can be added or excluded from the log file. Separate items with a comma.

list_item values are described in Table 17. Use the prefix no to suppress the display.

Table 17: display_specifiers Command Line Options

ltem Controls display of ...

[no]show_allocator The allocator for the address space

[no]show_backtrace The backtrace for memory blocks

[no]show_backtrace_id The backtrace ID for memory blocks

[no]show_block_address The start and end addresses for a memory block

[no]show_flags Memory block flags

[no]show_guard_id The guard ID for memory blocks

[no]show_guard_settings The guard settings for memory blocks

[no]show_image The process/library associated with a backtrace frame

[no]show_owner The owner of the allocation

[no]show_pc The backtrace frame PC

[no]show_pid The process PID

[no]show_red_zones_set-
tings

The Red Zone entries for allocations and deallocations in
the entire address space

 event_action Command-Line Option 537

Memory Scripting

event_action Command-Line Option
-event_action defines actions to perform for a particular event, like so:

-event_action “event=action list”
Specifies one or more actions to perform if an event occurs. The “event=action list” consists of comma-sepa-
rated set event=action pairs. For example:

"alloc_null=save_memory_debugging_file, \
 dealloc_notification=list_allocations"

event can be:

Table 18: event_action Command Line Option: events

Event Description

addr_not_at_start A block is being freed, and the address is not at the beginning of the block.

alloc_not_in_heap The block being freed is not in the heap.

alloc_null The malloc() function returned a null block.

alloc_returned_bad_align-
ment

The block is misaligned.

any_memory_event All memory notification events.

bad_alignment_argument The block returned by the malloc library is not aligned on a byte boundary
required by your operating system. The heap may be corrupted. (This is not a
program error.)

double_alloc Allocator returned a block already in use. The heap may be corrupted.

double_dealloc Program is attempting to free a block already freed.

free_not_allocated Program is attempting to free a block that was not allocated.

guard_corruption Guard corruption was detected when program deallocated a block.

hoard_low_memory_thresh-
old

Hoard low memory threshold is crossed.

realloc_not_allocated Program attempted to reallocate a block that was not allocated.

rz_overrun Program attempted to access memory beyond end of allocated block.

rz_underrun Program attempted to access memory before start of allocated block.

rz_use_after_free Program attempted to access block after it was deallocated.

rz_use_after_free_overrun Program attempted to access memory beyond end of deallocated block.

rz_use_after_free_underrun Program attempted to access memory before start of deallocated block.

termination_notification Program is about to execute its _exit routine.

 Other Command Line Options 538

Memory Scripting

action is as follows:

Other Command Line Options
The memscript command takes these additional options.

-guard_blocks

Turn on guard blocks.

-red_zones_overruns

Turn on testing for Red Zone overruns.

-red_zones_underruns

Turn on testing for Red Zone underruns.

-detect_use_after_free

Turn on testing for use after memory is freed.

-hoard_freed_memory

Turn on the hoarding of freed memory.

-hoard_low_memory_threshold nnnn
Specify the low memory threshold that will generate an event.

-detect_leaks

Turn on leak detection.

-red_zones_size_ranges min:max,min:max,...
Specify the memory allocation ranges for which Red Zones are in effect. Ranges can be in the following formats:

x:y allocations from x to y :y allocations from 1 to y x: allocations of x and higher x allocation of x

Table 19: event_action Command Line Option: actions

Action Description

check_guard_blocks Check for guard blocks and generate a corruption list.

list_allocations Create a list of all your program’s allocations.

list_leaks Create a list of all of your program’s leaks.

save_html_heap_-
status_source_view

Save the Heap Status Source report as an HTML file.

save_memory_debugging_file Save a memory debugging file; you can reload this file at a later time.

save_text_heap_status_sourc
e_view

Save the Heap Status Source report as a text file.

 memscript Example 539

Memory Scripting

-maxruntime hh:mm:ss
Specify the maximum amount of time the script should run where:

hh: number hours mm: number of minutes ss: number of seconds

As a script begins running, TotalView adds information to the beginning of the log file. This information includes
time stamps for both the file when processes start, the name of the program, and so on.

memscript Example
The example here performs these actions:

 Runs the filterapp program under TotalView control.

 Passes an argument of 2 to the filterapp program.

 Whenever any event occurs—Heap Interposition Agent (HIA) event, SEGV, and the like—saves a
memory debugging file.

 Allows the script to run for no longer than 5 seconds.

 Performs the following activities: use guard blocks, hoard freed memory, and detect memory leaks.
memscript -maxruntime "00:00:05" \
 -event_action "any_event=save_memory_debugging_file" \
 -guard_blocks -hoard_freed_memory -detect_leaks \
 ~/Work/filterapp -a 2

540

Preparing Programs for Memory
Debugging

 Compiling Programs for Memory Debugging on page 541

 Linking Your Application with the HIA on page 542

 Using env to Insert the HIA on page 545

 Installing tvheap_mr.a on AIX on page 547

 Using TotalView in Selected Environments on page 549

Compiling Programs for Memory Debugging 541

Preparing Programs for Memory Debugging

Compiling Programs for Memory Debugging
The first step when preparing a program to load for memory debugging is adding your compiler’s -g debugging
command-line option to generate symbol table debugging information; for example:

cc -g -o executable source_program
You can also take advantage of memory debugging on programs that you did not compile using the -g option, or
programs for which you do not have source code. However, TotalView may not be able to provide source code
information.

Table 20 presents some general considerations.

Table 20: Compiler Considerations

Compiler Option or
Library What It Does When to Use It

Debugging symbols
option (usually -g)

Generates debugging information in the symbol
table.

Before debugging any program
with TotalView.

Optimization option (usu-
ally -O)

Rearranges code to optimize your program’s exe-
cution. Some compilers won’t let you use the -O
option and the -g option at the same time.Even if
your compiler lets you use the -O option, don’t
use it when debugging your program, since unex-
pected results often occur.

After you finish debugging your
program.

Multiprocess program-
ming library (usually
dbfork)

Uses special versions of the fork() and execve()
system calls. In some cases, you need to use the -
lpthread option.For more information about
dbfork, see Linking with the dbfork Library in
the TotalView Reference Guide.

Before debugging a multipro-
cess program that explicitly calls
fork() or execve().

RELATED TOPICS
More on compiling programs

Saving action points

The TV::stop_all variable in the TotalView Reference Guide

Linking Your Application with the HIA 542

Preparing Programs for Memory Debugging

Linking Your Application with the HIA
TotalView puts its Heap Interposition Agent (HIA) between your program and its heap library, which allows the
HIA to intercept the calls that your program makes to this library. After it intercepts the call, it checks the call for
errors and then sends it on to the library so that it can be processed. The TotalView HIA does not replace stan-
dard memory functions; it just monitors what they do.

In most cases, TotalView arranges for the HIA to be loaded automatically when it starts your program. In some
cases, however, special steps must be taken to ensure the HIA loads. One example is when you are starting an
MPI program using a launcher that does not propagate environment variables. (If you start your MPI program in
TotalView using the Add Parallel Program page, TotalView propagates the information for you.) Another is when
you want to start your program outside, or independently of, TotalView, and want to attach to the program later
after it has started.

There are two ways you can arrange for the HIA to be loaded

Link the application with the HIA, as described in this section.

Request that the heap HIA be preloaded by setting the runtime loader's preloading environment variable. See
Using env to Insert the HIA.

Here is some important platform-specific information:

 On AIX, the malloc replacement code and HIA application must be in directories searched by the
dynamic loader. If they are not in any of the standard directories (you can check with your system
administrator), you can set LIBPATH to search these directories when you run the program.
Another option is to add the directories to the program's list of search directories when you link the
program. To do this, use the -L option as described in the table below. If you are in doubt about
the directories being searched, you can obtain a list of the searched directories with dump -Hv
<program-name>.

For additional requirements with AIX, see Installing tvheap_mr.a on AIX on page 15.

 On Cray, TotalView supports both static and dynamic linking. See the table below for the link lines
you need to use.

 On Apple Mac OSX, you cannot link the HIA into your program.

Table 21 lists additional command-line linker options that you must use when you link your program:

Linking Your Application with the HIA 543

Preparing Programs for Memory Debugging

1 On Ubuntu platforms, if the link line fails to start TotalView, try adding the additional flag -Wl,-no-as-needed.
This flag should occur before the linking of tvheap, so on 64-bit platforms the link line would be:
-L<path> -Wl,-no-as-needed -ltvheap_64 -Wl,-rpath,<path>

Table Options:

 <path>
The absolute path to the HIA in the TotalView installation hierarchy, located at:

<installdir>/toolworks/TotalView.<version>/<platform>/lib

 <installdir>
The installation base directory name

 <version>
TotalView version number

Table 21: Command Line Linker Options for Memory Debugging

Platform Compiler
Binary
Interface Additional linker options

Cray XT, XE, XK CLE (dynamic) - 64 -dynamic -L<path> -ltvheap_64 -Wl,-
rpath,<path>

Cray XT, XE, XK CLE (static) - 64 -L<path> -ltvheap_cnl
IBM RS/6000 (all) IBM/GCC 32/64 -L<path_mr> -L<path>

AIX 5 IBM/GCC 32 -L<path_mr> -L<path> <path>/aix_malloctype.o
64 -L<path_mr> -L<path> <path>/

aix_malloctype64_5.o
Linux x86-64 1 GCC/Intel/

PGI
32 -L<path> -ltvheap -Wl,-rpath,<path>

64 -L<path> -ltvheap_64 -Wl,-rpath,<path>

64 -L<path> -ltvheap_64 -Wl,-rpath,<path>

Linux PowerLE GCC 64 -L<path> -ltvheap_64 -Wl,-rpath,<path>

Linux ARM64 GCC 64 -L<path> -ltvheap_64 -Wl,-rpath,<path>

Sun Sun/
Apogee

32 -L<path> -ltvheap -R <path>

Sun 64 -L<path> -ltvheap_64 -R <path>

GCC 32 -L<path> -ltvheap -Wl,-R,<path>

64 -L<path> -ltvheap_64 -Wl,-R,<path>

Linking Your Application with the HIA 544

Preparing Programs for Memory Debugging

 <platform>
The platform tag

 <path_mr>
The absolute path of the malloc replacement library. This value is determined by the person who
installs the TotalView malloc replacement library.

Using env to Insert the HIA 545

Preparing Programs for Memory Debugging

Using env to Insert the HIA

NOTE: The Heap Interposition Agent (HIA) library path can be hard to determine. Use this CLI com-
mand to print its path:
puts $TV::hia_local_dir

When TotalView attaches to a process that is already running, the HIA must already be associated with it. You can
do this in two ways:

 Manually link the HIA as described in previous sections.

 Start the program using env (see man env on your system). This pushes the HIA into your
program.

NOTE: Preloading cannot be used with Cray. For information on preloading with Cray, see Linking
Your Application with the HIA.

Table 22 lists he variables required by each platform. The placeholder <hia_dir> represents the directory in which
the HIA is found.

Table 22: Variables by Platform for Preloading the HIA

Platform Variable

Apple Mac OS X DYLD_INSERT_LIBRARIES=<hia_dir>/libtvheap.dylib
Note: See Mac OS on page 550 for detail on how this environment variable works.

IBM AIX MALLOCTYPE=user:tvheap_mr.a
If you are already using MALLOCTYPE for another purpose, reassign its value to the
variable TVHEAP_MALLOCTYPE and assign MALLOCTYPE as above; when the HIA
starts it will correctly pass on the options.

Linux

32-bit LD_PRELOAD=<hia_dir>/libtvheap.so

64-bit LD_PRELOAD=<hia_dir>/libtvheap_64.so

Sun

32-bit generic LD_PRELOAD=<hia_dir>/libtvheap.so

32-bit specific LD_PRELOAD_32=<hia_dir>/libtvheap.so

Using env to Insert the HIA 546

Preparing Programs for Memory Debugging

64-bit generic LD_PRELOAD=<hia_dir>/libtvheap_64.so

64-bit specific LD_PRELOAD_64=<hia_dir>/libtvheap_64.so
If the HIA is the only library you are preloading, use the generic variable. Otherwise,
use whichever variable was used for the other preloaded libraries.

Table 22: Variables by Platform for Preloading the HIA

Platform Variable

Installing tvheap_mr.a on AIX LIBPATH and Linking 547

Preparing Programs for Memory Debugging

Installing tvheap_mr.a on AIX

NOTE: Installing tvheap_mr.a on AIX requires that the system have the bos.adt.syscalls System Calls
Application Toolkit page installed.

You must install the tvheap_mr.a library on each node on which you plan to run the Heap Interposition Agent
(HIA).The aix_install_ tvheap_mr.sh script contains most of the required setup, and is located in this directory:

toolworks/totalview.version/rs6000/lib/

For example, after you become root, enter the following commands:

cd toolworks/totalview.1.0.0-0/rs6000/lib
mkdir /usr/local/tvheap_mr \
 ./aix_install_tvheap_mr.sh ./tvheap_mr.tar \
 /usr/local/tvheap_mr

Use poe to create tvheap_mr.a on multiple nodes.

The pathname for the tvheap_mr.a library must be the same on each node. This means that you cannot install
this library on a shared file system. Instead, you must install it on a file system that is private to the node. For
example, because /usr/local is usually accessible only from the node on which it is installed, you might want to
install it there.

NOTE: The tvheap_mr.a library depends heavily on the exact version of libc.a that is installed on a
node. If libc.a changes, you must recreate tvheap_mr.a by re-executing the
aix_install_tvheap_mr.sh script.

If this malloc replacement library changes (which is infrequent) you’ll need to rerun this procedure. Any change
will be noted among a release’s new features.

LIBPATH and Linking
This section discusses compiling and linking your AIX programs. The following command adds path_mr and path
to your program’s libpath:

xlc -Lpath_mr -Lpath -o a.out foo.o
When malloc() dynamically loads tvheap_mr.a, it should find the library in path_mr. When tvheap_mr.a dynam-
ically loads tvheap.a, it should find it in path.

Installing tvheap_mr.a on AIX LIBPATH and Linking 548

Preparing Programs for Memory Debugging

The AIX linker supports relinking executables. This means that you can make an already complete application
ready for the TotalView HIA; for example:

cc a.out -Lpath_mr -Lpath -o a.out.new
Here's an example that does not link in the heap replacement library. Instead, it allows you to dynamically set
MALLOCTYPE:

xlC -q32 -g \
 -L/usr/local/tvheap_mr \
 -L/home/totalview/interposition/lib prog.o -o prog

This next example shows how a program can be set up to access the TotalView HIA by linking in the
aix_malloctype.o module:

xlc -q32 -g \
 -L/usr/local/tvheap_mr \
 -L/home/totalview/interposition/lib prog.o \
 /home/totalview/interposition/lib/aix_malloctype.o \
 -o prog

You can check that the paths made it into the executable by running the dump command; for example:

% dump -Xany -Hv tx_memdebug_hello

 tx_memdebug_hello:

 Loader Section
 Loader Header Information
 VERSION# #SYMtableENT #RELOCent LENidSTR
 0x00000001 0x0000001f 0x00000040 0x000000d3

 #IMPfilID OFFidSTR LENstrTBL OFFstrTBL
 0x00000005 0x00000608 0x00000080 0x000006db

 Import File Strings
 INDEX PATH BASE MEMBER
 0 /.../lib:/usr/.../lib:/usr/lib:/lib
 1 libc.a shr.o
 2 libC.a shr.o
 3 libpthreads.a shr_comm.o
 4 libpthreads.a shr_xpg5.o

Index 0 in the Import File Strings section shows the search path the runtime loader uses when it dynamically
loads a library. Some systems propagate the preload library environment to the processes they will run; others,
do not. If they do not, you need to manually link them with the tvheap library.

In some circumstances, you might want to link your program instead of setting the MALLOCTYPE environment
variable. If you set the MALLOCTYPE environment variable for your program and it uses fork()/exec() a program
that is not linked with the HIA, your program will terminate because it fails to find malloc().

Using TotalView in Selected Environments MPICH 549

Preparing Programs for Memory Debugging

Using TotalView in Selected Environments
This topic describes using the memory debugger within various environments:

 MPICH

 IBM PE

 Mac OS

 Linux

MPICH
Here's how to use TotalView with MPICH MPI codes. This has been tested only on Linux x86-64.

1. You must link your parallel application with the TotalView HIA as described in LIBPATH and Linking. On
most Linux x86-64 systems, you’ll enter:

mpicc -g test.o -o test -Lpath \
 -ltvheap -Wl,-rpath,path

2. Start TotalView using the -tv command-line option to the mpirun script in the usual way. For example:

mpirun -tv mpirun-args test args
TotalView will start up on the rank 0 process.

3. If you need to configure TotalView, you should do it now.

4. Run the rank 0 process.

IBM PE
To use TotalView with IBM PE MPI codes:

1. You must prepare your parallel application to use the TotalView HIA; see LIBPATH and Linking and Install-
ing tvheap_mr.a on AIX. Here is an example that usually works:

mpcc_r -g test.o -o test -Lpath_mr -Lpath \
 path/aix_malloctype.o

2. Start TotalView on poe as usual:
totalview poe -a test args

Using TotalView in Selected Environments Mac OS 550

Preparing Programs for Memory Debugging

Because tvheap_mr.a is not in poe’s LIBPATH, enabling TotalView upon the poe process will cause problems
because poe will not be able to locate the tvheap_mr.a malloc replacement library.

3. If you need to configure TotalView, you should do it now.

4. Run the poe process.

Mac OS
In most circumstances, memory debugging works seamlessly on the Mac OS.

From 10.11 El Capitan and onwards, however, the Mac OS introduced some changes that can affect some pro-
grams when memory debugging. While these should not affect how your program runs, in some rare cases you
may want to fine-tune how the Heap Interposition Agent (HIA) behaves.

Background

In the Mac OS environment, interposition works only for preloaded DLLs, meaning that the HIA can only be pre-
loaded rather than linked with the target as in some other operating systems. (See Linking Your Application with
the HIA for more information on interposition and the HIA.)

The HIA makes sure that any environment variables related to preloading are correctly propagated if your pro-
gram calls execve() or system(). The required Mac OS environment variable is DYLD_INSERT_LIBRARIES.

For all Mac OS releases from El Capitan onwards, however, a new feature System Integrity Protection (SIP) imple-
mented a protocol that disallows passing DYLD_INSERT_LIBRARIES to a protected program or a program that
resides in a protected directory. Calls to system() are affected because it is defined as invoking /bin/sh, which is
in a SIP-protected directory.

Calls to system() on Mac OS

To work around the Mac OS SIP feature, for every system() call, the HIA copies bin/sh to a temporary directory (in
/tmp) and arranges for the copy to be used so that DYLD_INSERT_LIBRARIES is not filtered out during the call.
Once the child process has completed, the parent deletes the temporary directory.

This is the default behavior. To modify this, enable the environment variable TV_MACOS_SYSTEM.

Setting the Environment Variable TV_MACOS_SYSTEM

The TV_MACOS_SYSTEM environment variable allows customization of memory debugging behavior for Mac OS
programs that call system(), and includes the following options:

Using TotalView in Selected Environments Linux 551

Preparing Programs for Memory Debugging

pass_through=boolean
If true, the call to system () is passed through to the underlying implementation.

The default is false, in which case the HIA controls the call to system() as described in Calls to system() on
Mac OS on page 550. Setting this option to true may be useful if you have disabled SIP.

Example: "TV_MACOS_SYSTEM=pass_through=true"

shell=<pathname>
Defines the shell for the HIA to use instead of the default bin/sh.

If defined, be sure that the SIP does not control access to this shell so that the HIA has access to it. Note that the
named shell is not deleted after the return from system().

This setting may be useful to avoid any potential performance issues caused by copying the shell for each sys-
tem() call., and then deleting it later.

Be aware, however, that using a previously stashed copy of bin/sh may require some maintenance, since the
copy will not be updated when the operating system is updated.

The pathname must not contain commas or whitespace characters.

Example: "TV_MACOS_SYSTEM=shell=/path/to/some/copy/of/bin/sh"

tmpdir=<pathname>
Defines a temporary directory where the HIA will copy the shell (given the default setting of the option
pass_through=false).

The HIA does not create the directory, assuming that it exists already. The HIA deletes the copy of the shell after
processing is complete, but does not remove the directory.

If not set, the HIA creates a temporary directory in /tmp, which it removes after the call to system () completes.

Example: "TV_MACOS_SYSTEM=tmpdir=/path/to/some/directory"

Linux

dlopen and RTLD_DEEPBIND

In most circumstances, memory debugging works seamlessly with programs that call dlopen to dynamically load
shared objects (DSOs).

However, the Linux implementation of dlopen accepts RTLD_DEEPBIND in the flags/mode argument.
RTLD_DEEPBIND affects how undefined references in a DSO are bound. By default, when RTLD_DEEPBIND is
not set, the dynamic linker first looks up any symbols needed by a newly-loaded DSO in the global scope.

Using TotalView in Selected Environments Linux 552

Preparing Programs for Memory Debugging

RTLD_DEEPBIND modifies this behavior. When set, the dynamic linker places the lookup scope of the DSO ahead
of the global scope. This means that the dynamic linker seeks to bind any undefined references in the DSO to
definitions in the DSO, or any of the DSOs on which it depends. Only after these have been searched and a sym-
bol not found is the global scope examined.

RTLD_DEEPBIND can affect memory debugging because, in some circumstances, references to all or part of the
heap manager interface in a DSO can become bound to definitions in the standard library directly, rather than to
those in the HIA. As a result, the HIA may not see all the traffic between the program and heap manager. If this
occurs, the information the HIA is able to collect for TotalView will be incomplete, reducing its usefulness. In some
circumstances, memory debugging may even fail.

How the HIA Handles RTLD_DEEPBIND

The HIA deals with the challenges posed by RTLD_DEEPBIND by intercepting calls to dlopen. If the program
specifies RTLD_DEEPBIND, the HIA inserts itself as one of the to-be-loaded DSO's dependents. It does this by
creating a new ELF wrapper file that lists the HIA and the DSO the program wants to dlopen as needed files.
Instead of opening the DSO the program named, the HIA dlopens the new wrapper DSO it constructed. Since the
DSO given by the program code is listed as a needed file, it too is opened.

As far as the program is concerned, the dlopen behaves as it would in the absence of the HIA. After the call to
dlopen, the HIA cleans up and deletes the wrapper DSO that it created.

Modifying How the HIA Handles RTLD_DEEPBIND

The basic behavior described in How the HIA Handles RTLD_DEEPBIND can be modified by setting the
TVHEAP_DEEPBIND environment variable. The following comma-separated settings are supported options:

pass_through=boolean
If true, the HIA does no special processing to handle RTLD_DEEPBIND. It does not create the ELF wrapper, and
instead passes the operation through to the standard dlopen.

The default is false, in which case the HIA takes the steps described in How the HIA Handles RTLD_DEEP-
BIND .

Example: "TVHEAP_DEEPBIND=pass_through=true"

keep_wrapper=boolean
If true, the HIA does not delete the ELF wrapper it creates after it has been used. The default is false, in which
case the HIA deletes the ELF wrapper after it dlopens it.

Example: "TVHEAP_DEEPBIND=keep_wrapper=true"

tmpdir=<directory_name>
If defined, the HIA creates the ELF wrapper it generates in the directory specified by the tmpdir setting. The de-
fault is to use the setting of the environment variable TMPDIR. If TMPDIR is not defined, the ELF wrapper is cre-
ated in /tmp.

Using TotalView in Selected Environments Linux 553

Preparing Programs for Memory Debugging

 554

PART VII Appendices

 555

Appendix A
More on Expressions

Calling Functions: Problems and Issues 556

Calling Functions: Problems and Issues
Unfortunately, calling functions using expressions can cause problems, such as in these scenarios:

 What happens if the function has a side effect? For example, suppose you have entered these two
expressions into the Data View: my_var[cntr] and my_var[++cntr]. If cntr equals 3, you’ll see the
values of my_var[3] and my_var[4]. However, since cntr now equals 4, the first entry will no longer
be correct.

 What happens when the function crashes (after all, you are debugging), doesn’t return, returns the
wrong value, or hits a breakpoint?

 What do calling functions do to your debugging interaction if the expression evaluation takes an
excessive amount of time?

 What happens if a function creates processes and threads? Or worse, kills them?

In general, there are some protections in the code. For example, if you’re displaying items in the Data View,
TotalView avoids an infinite loop by evaluating items only once. This does mean that the information is accurate
only at the time at which TotalView made the evaluation.

In most other cases, you’re basically on your own. If there’s a problem, you’ll get an error message. If something
takes too long, press the Halt button. But if a function alters memory values or starts or stops processes or
threads that interfere with your debugging, restart your program. However, if an error occurs while using the
Data View, pressing the Stop button pops the stack, leaving your program in the state it was in before you
invoked the expression. However, changes made to heap variables will, of course, not be undone.

Using Built-in Variables and Statements Using TotalView Variables 557

Using Built-in Variables and Statements
TotalView contains a number of built-in variables and statements that can simplify your debugging activities. You
can use these variables and statements in evalpoints.

Topics in this section are:

 Using TotalView Variables on page 557

 Using Built-In Statements on page 558

Using TotalView Variables
TotalView variables that let you access special thread and process values. All variables are 32-bit integers, which is
an int or a long on most platforms. The following table describes built-in variables:

The built-in variables let you create thread-specific breakpoints from the expression system. For example, the
$tid variable and the $stop built-in function let you create a thread-specific breakpoint, as the following code
shows:
if ($tid == 3)

Name Returns

$clid The cluster ID. (Interpreted expressions only.)

$duid The TotalView-assigned Debugger Unique ID (DUID). (Inter-
preted expressions only.)

$newval The value just assigned to a watched memory location.
(Watchpoints only.)

$nid The node ID. (Interpreted expressions only.)

$oldval The value that existed in a watched memory location before a
new value modified it. (Watchpoints only.)

$pid The process ID.

$processduid The DUID (debugger ID) of the process. (Interpreted expres-
sions only.)

$systid The thread ID assigned by the operating system. When this is
referenced from a process, TotalView throws an error.

$tid The thread ID assigned by TotalView. When this is referenced
from a process, TotalView throws an error.

Using Built-in Variables and Statements Using Built-In Statements 558

 $stop;
This tells TotalView to stop the process only when the third thread evaluates the expression.

You can also create complex expressions using these variables; for example:
if ($pid != 34 && $tid > 7)
 printf (“Hello from %d.%d\n”, $pid, $tid);

Using any of the following variables means that the evalpoint is interpreted instead of compiled: $clid, $duid,
$nid, $processduid, $systid, $tid, and $visualize. In addition, $pid forces interpretation on AIX.

You can’t assign a value to a built-in variable or obtain its address.

Using Built-In Statements
TotalView statements help you control your interactions in certain circumstances. These statements are available
in all languages, and are described in the following table. The most commonly used statements are $count,
$stop, and $visualize.

Statement Use

$count expression Sets a process-level countdown breakpoint.

$countprocess expression When any thread in a process executes this statement for the number of
times specified by expression, the process stops. The other processes in
the control group continue to execute.

$countall expression Sets a program-group-level countdown breakpoint.All processes in the
control group stop when any process in the group executes this statement
for the number of times specified by expression.

$countthread expression Sets a thread-level countdown breakpoint. When any thread in a process
executes this statement for the number of times specified by expression,
the thread stops. Other threads in the process continue to execute. If the
target system cannot stop an individual thread, this statement performs
the same as $countprocess.A thread evaluates expression when it exe-
cutes $count for the first time. This expression must evaluate to a positive
integer. When TotalView first encounters this variable, it determines a value
for expression. TotalView does not reevaluate until the expression actually
stops the thread. This means that TotalView ignores changes in the value of
expression until it hits the breakpoint. After the breakpoint occurs,
TotalView reevaluates the expression and sets a new value for this state-
ment.The internal counter is stored in the process and shared by all
threads in that process.

Using Built-in Variables and Statements Using Built-In Statements 559

$hold Holds the current process.

$holdprocess If all other processes in the group are already held at this evalpoints,
TotalView releases all of them. If other processes in the group are running,
they continue to run.

$holdstopall
$holdprocessstopall

Like $hold, except that any processes in the group which are running are
stopped. The other processes in the group are not automatically held by
this call—they are just stopped.

$holdthread Freezes the current thread, leaving other threads running.

$holdthreadstop
$holdthreadstopprocess

Like $holdthread, except that it stops the process. The other processes in
the group are left running.

$holdthreadstopall Like $holdthreadstop, except that it stops the entire group.

$stop $stopprocess Sets a process-level breakpoint. The process that executes this statement
stops; other processes in the control group continue to execute.

$stopall Sets a program-group-level breakpoint. All processes in the control group
stop when any thread or process in the group executes this statement.

$stopthread Sets a thread-level breakpoint. Although the thread that executes this
statement stops, all other threads in the process continue to execute. If
the target system cannot stop an individual thread, this statement per-
forms the same as to $stopprocess.

$visualize(expres-
sion[,slice])

Visualizes the data specified by expression and modified by the optional
slice value. Expression and slice must be expressed using the code frag-
ment’s language. The expression must return a dataset (after modification
by slice) that can be visualized. slice is a quoted string that contains a slice
expression. For more information on using $visualize in an expression,
see “Using the Visualizer” on page 314.

Statement Use

Using Programming Language Elements Using C and C++ 560

Using Programming Language Elements

Using C and C++
This section contains guidelines for using C and C++ in expressions.

 You can use C-style (/* comment */) and C++-style (// comment) comments; for example:
// This code fragment creates a temporary patch
i = i + 2; /* Add two to i */

 You can omit semicolons if the result isn’t ambiguous.

 You can use dollar signs ($) in identifiers. However, we recommend that you do not use dollar signs
in names created within the expression system.

If your program does not use a templated function within a library, your compiler may not include a reference to
the function in the symbol table. That is, TotalView does not create template instances. In some cases, you might
be able to overcome this limitation by preloading the library. However, this only works with some compilers. Most
compilers only generate STL operators if your program uses them.

You can use the following C and C++ data types and declarations:

 You can use all standard data types such as char, short, int, float, and double, modifiers to these
data types such as long int and unsigned int, and pointers to any primitive type or any named
type in the target program.

 You can only use simple declarations. Do not define stuct, class, enum or union types or
variables.

You can define a pointer to any of these data types. If an enum is already defined in your program, you can use
that type when defining a variable.

 The extern and static declarations are not supported.

You can use the following the C and C++ language statements.

 You can use the goto statement to define and branch to symbolic labels. These labels are local to
the window. You can also refer to a line number in the program. This line number is the number
displayed in the Source Pane. For example, the following goto statement branches to source line
number 432 of the target program:
goto 432;

 Although you can use function calls, you can’t pass structures.

Using Programming Language Elements Using Fortran 561

 You can use type casting.

 You can use assignment, break, continue, if/else structures, for, goto, and while statements.
Creating a goto that branches to another TotalView evaluation is undefined.

Using Fortran
When writing code fragments in Fortran, you need to follow these guidelines:

 In general, you can use free-form syntax. You can enter more than one statement on a line if you
separate the statements with semi-colons (;). However, you cannot continue a statement onto
more than one line.

 You can use GOTO, GO TO, ENDIF, and END IF statements; Although ELSEIF statements aren’t
allowed, you can use ELSE IF statements.

 Syntax is free-form. No column rules apply.

 The space character is significant and is sometimes required. (Some Fortran 77 compilers ignore all
space characters.) For example:

You can use the following data types and declarations in a Fortran expression:

 You can use the INTEGER, REAL, DOUBLE PRECISION, and COMPLEX data types.

 You can’t define or declare variables that have implied or derived data types.

 You can only use simple declarations. You can’t use a COMMON, BLOCK DATA, EQUIVALENCE,
STRUCTURE, RECORD, UNION, or array declaration.

 You can refer to variables of any type in the target program.

 TotalView assumes that integer (kind=n) is an n-byte integer.

Fortran Statements

You can use the Fortran language statements:

Valid Invalid

DO 100 I=1,10 DO100I=1,10
CALL RINGBELL CALL RING BELL
X .EQ. 1 X.EQ.1

Using Programming Language Elements Using Fortran 562

 You can use assignment, CALL (to subroutines, functions, and all intrinsic functions except
CHARACTER functions in the target program), CONTINUE, DO, GOTO, IF (including block IF, ENDIF,
ELSE, and ELSE IF), and RETURN (but not alternate return) statements.

 If you enter a comment in an expression, precede the comment with an exclamation point (!).

 You can use array sections within expressions. For more information, see “Array Slices and Array
Sections” on page 289.

 A GOTO statement can refer to a line number in your program. This line number is the number that
appears in the Source Pane. For example, the following GOTO statement branches to source line
number 432:

GOTO $432;

You must use a dollar sign ($) before the line number so that TotalView knows that you’re referring to a source
line number rather than a statement label.

You cannot branch to a label within your program. You can instead branch to a TotalView line number.

 The following expression operators are not supported: CHARACTER operators and the .EQV.,
.NEQV., and .XOR. logical operators.

 You can’t use subroutine function and entry definitions.

 You can’t use Fortran 90 pointer assignment (the => operator).

 You can’t call Fortran 90 functions that require assumed shape array arguments.

Fortran Intrinsics

TotalView supports some Fortran intrinsics. You can use these supported intrinsics as elements in expressions.
The classification of these intrinsics into groups is that contained within Chapter 13 of the Fortran 95 Handbook,
by Jeanne C. Adams, et al., published by the MIT Press.

TotalView does not support the evaluation of expressions involving complex variables (other than as the argu-
ments for real or aimag). In addition, we do not support function versions. For example, you cannot use dcos
(the double-precision version of cos).

The supported intrinsics are:

 Bit Computation functions: btest, iand, ibclr, ibset, ieor, ior, and not.

 Conversion, Null and Transfer functions: achar, aimag, char, dble, iachar, ichar, int, and real.

 Inquiry and Numeric Manipulation Functions: bit_size.

Using Programming Language Elements Using Fortran 563

 Numeric Computation functions: acos, asin, atan, atan2, ceiling, cos, cosh, exp, floor, log, log10,
pow, sin, sinh, sqrt, tan, and tanh.

Complex arguments to these functions are not supported. In addition, on MacIntosh and AIX, the log10, ceiling,
and floor intrinsics are not supported.

The following are not supported:

 Array functions

 Character computation functions.

 Intrinsic subroutines

If you statically link your program, you can only use intrinsics that are linked into your code. In addition, if your
operating system is Mac OS X, AIX, or Linux/Power, you can only use math intrinsics in expressions if you directly
linked them into your program. The ** operator uses the pow function. Consequently, it too must either be used

within your program or directly linked. In addition, ceiling and log10 are not supported on these three platforms.

 564

Appendix B
Compiling for Debugging

 Compiling with Debugging Symbols on page 565

 Maintaining Debug Information Separate from an Executable on page 567

This appendix provides some important information on how to prepare your applications to be debugged
with the TotalView debugger. The information covers only currently supported platforms. Please see the Plat-
forms Guide for information.

Compiling with Debugging Symbols 565

Compiling with Debugging Symbols
The first step in getting a program ready for debugging is to add your compiler's –g debugging command line
option. This option tells your compiler to generate symbol table debugging information; for example:

cc -g -o executable-name source-file

Here are a couple of general considerations about compiling your code:

The following table lists the procedures to compile C/C++ programs on Linux platforms.

The following table lists the procedures to compile Fortran programs on Linux platforms.

Compiler option What it does When to use it

Debugging symbols
option (usually –g)

Generates debugging information in the symbol table. Before debugging any pro-
gram with TotalView.

Optimization option
(usually –O)

Rearranges code to optimize your program's execution.

Some compilers let you use the –O option with the -g
option, but we advise against doing this before using
the debugger as unexpected results often occur.

After you finish debugging your
program.

Compiler Compiler Command Line

GCC C gcc -g source.c

GCC C++ g++ -g source.cxx

clang C clang -g source.c

clang C++ clang++ -gsource.cxx

Oracle Studio C cc -g source.c

Oracle Studio C++ CC -g source.cxx

Intel C++ Compiler icc -g source.cxx

PGI CC pgcc -g source.c

PGI C++ pgc++ -gsource.cxx

Compiler Compiler Command Line

Absoft Fortran 77 f77 -g program
.f f77 -g program.for

Absoft Fortran 90 f90 -g program.f90

Compiling with Debugging Symbols 566

The following table lists the procedures to compile programs on ARM64 platforms.

The following table lists the procedures to compile programs on Mac OS platforms.

Absoft Fortran 95 f95 -g program.f95

G77 g77 -g program.f

Intel Fortran Compiler ifort -g program.f

Lahey/Fujitsu Fortran lf95 -g program.f

PGI Fortran 77 pgf77 -g program.f

PGI Fortran 90 pgf90 -g program.f

Compiler Compiler Command Line

GCC C gcc -g program.c

GCC C++ g++ -g program.cxx

G77 g77 -g program.f

Compiler Compiler Command Line

Absoft Fortran 77 f77 -gprogram
.f f77 -gprogram.for

Absoft Fortran 90 f90 -gprogram.f90

Absoft Fortran 95 f95 -g program.f95

GCC C gcc -g program.c

GCC C++ g++ -gprogram.cxx

GCC Fortran gfortran -gprogram.f

clang C clang -g source.c

clang C++ clang++ -gsource.cxx

Intel C++ Compiler icc -g source.cxx

Intel Fortran Compiler ifort -g program.f

Compiler Compiler Command Line

Maintaining Debug Information Separate from an Executable 567

Maintaining Debug Information Separate
from an Executable
Because debug information embedded in an executable can be very large, some versions of Linux support strip-
ping this information from the executable and placing it into a separate file. This file is then referenced within the
executable using either a build ID section or a debug link section (or both) to identify the location and name of
the separate debug file. The stripped image file will normally take up less space on the disk, and if you want the
debug information, you can also install the corresponding .debug file.

The way this works with TotalView is controlled by a series of state variables and command line options discussed
in Controlling Separate Debug Files.

Create this file on Linux systems that have an objcopy that supports the - -add-gnu-debuglink and
- -only-keep-debug command-line options. If objcopy - -help mentions these options, creating this file is sup-
ported. See man objcopy for more details.

To create a separate file containing debug information:

1. Create a .debug copy of the executable or shared library. This second file is a regular executable but will
contain only debugging symbol table information, with no code or data.

2. Create a stripped copy of the image file, and add to the stripped executable a .gnu_debuglink section that
identifies the .debug file.

NOTE: The technique for creating a build ID separate debug information file is different
and more complex than that for creating a debug link. Consult your system doc-
umentation for how to create a separate debug information file using the build
ID method.

3. Distribute the stripped image and .debug files separately.

For example:

objcopy --only-keep-debug hello hello.debug
objcopy --strip-all hello
objcopy --add-gnu-debuglink=hello.debug hello

The code above uses objcopy to:

1. Create a separate debug file for an executable hello named hello.debug, containing only debug symbols
and information.

Maintaining Debug Information Separate from an Executable Controlling Separate Debug Files 568

2. Strip the debug information from the hello executable.

3. Add a .gnu_debuglink section to the hello executable.

Controlling Separate Debug Files
The following command line options and CLI variables control how TotalView handles separate debug files.

 Controls whether TotalView looks for either a build ID or a .gnu_debuglink section in image
files:

 Command line options -gnu_debuglink and -no_gnu_debuglink

 State variable TV::gnu_debuglink

This option basically turns on or off the functionality to support separate debug files.

 Sets the search path to use when looking for debug files referenced by a .gnu_debuglink
section:

 Command line option -gnu_debuglink_search_path

 State variable TV::gnu_debuglink_search_path

 Sets the search path to use when looking for debug files referenced by a .note.gnu.build-id
section:

 Command line option -gnu_debuglink_build_id_search_path

 State variable TV::gnu_debuglink_build_id_search_path

 Specifies the global debug directory:

 Command line option -gnu_debuglink_global_directory

 State variable TV::gnu_debuglink_global_directory

 Validates the separate .gnu_debuglink debug file:

 Validate using a build ID, if available

Command line option -gnu_debuglink_check_build_id

State variableTV::gnu_debuglink_check_build_id

 Validate using a checksum

Command line option -gnu_debuglink_checksum

State variable TV::gnu_debuglink_checksum

Maintaining Debug Information Separate from an Executable Searching for the Debug Files 569

Searching for the Debug Files
If theTV::gnu_debuglink variable is true and if an image file contains either a .note.gnu.build-id or a .gnu_de-
bug_link section, TotalView searches for a separate debug information file that matches the image file. TotalView
will first search for the debug file using the .note.gnu.build-id section in the image file, if it exists. If that search
fails, TotalView will search for the debug file using the .gnu_debuglink section in the image file, if it exists.

For the build ID method:

1. The TV::gnu_debuglink_build_id search_path string is split at the colon (:) characters into a list of strings.

2. For each string on the list, "%D", "%G", and "%/" token expansion is performed to yield a list of directory
names to search.

3. The list of directories is searched for the debug file path named by the .note.gnu.build-id section. The
debug file path follows the pattern ".build-id/xx/yyy...yyy.debug", where xx are the first two hex characters
of the build ID bit string, and yyy...yyy is the rest of the bit string. Build ID bit strings are at least 32 hex
characters.

For separate debug files referenced by a .gnu_debuglink section:

1. The TV::gnu_debuglink_search_path string is split at the colon (:) characters into a list of strings.

2. For each string on the list, "%D", "%G", and "%/" token expansion is performed to yield a list of directory
names to search.

3. The list of directories is searched for the debug file named in the .gnu_debuglink section. If the file is
found, and the checksum matches or TV::gnu_debuglink_checksum is false, then the debug file is used.

For example, assume that the program’s pathname is /A/B/hello_world and the debug filename stored in the
.gnu_debuglink section of this program is hello_world.debug. If the TV::gnu_debuglink_global_directory vari-
able is set to /usr/lib/debug and the TV::gnu_debuglink_search_path is set to its default value, TotalView
searches for the following files:

1. /A/B/hello_world.debug

2. /A/B/.debug/hello_world.debug

3. /usr/lib/debug/A/B/hello_world.debug

 570

Appendix C
Platform-Specific Topics

 Swap Space on page 571

 Shared Libraries on page 571

This appendix provides some platform-specific information that you may find useful. See Platforms Guide for
specifics on platform support.

Swap Space 571

Swap Space
Debugging large programs can exhaust the swap space on your machine. If you run out of swap space, TotalView
exits with a fatal error, such as:

Fatal Error: Out of space trying to allocate
This error indicates that TotalView failed to allocate dynamic memory. It can occur anytime during a debugging
session. It can also indicate that the data size limit in the C shell is too small. You can use the C shell’s limit com-
mand to increase the data size limit. For example:

limit datasize unlimited
Another error you might see is:

job_t::launch, creating process: Operation failed
This error indicates that the fork() or execve() system call failed while TotalView was trying to create a pro-
cess to debug.

To find out how much swap space has been allocated and is currently being used, use either the swapon or top
commands.

To create additional swap space, use the mkswap(8) command.

Shared Libraries
TotalView supports dynamically linked executables, that is, executables that are linked with shared libraries.

When you start TotalView with a dynamically linked executable, TotalView loads an additional set of symbols for
the shared libraries, as indicated in the shell from which you started TotalView. To accomplish this, TotalView:

1. Runs a sample process and discards it.

2. Reads information from the process.

3. Reads the symbol table for each library.

When you create a process without starting it, and the process does not include shared libraries, the PC points to
the entry point of the process, usually the start routine. If the process does include shared libraries, TotalView
takes the following actions:

Shared Libraries Changing Linkage Table Entries and LD_BIND_NOW 572

 Runs the dynamic loader: /lib/ld-linux.so.?.

 Sets the PC to point to the location after the invocation of the dynamic loader but before the
invocation of C++ static constructors or the main() routine.

When you attach to a process that uses shared libraries, TotalView takes the following actions:

 If you attached to the process after the dynamic loader ran, then TotalView loads the dynamic
symbols for the shared library.

 If you attached to the process before it runs the dynamic loader, TotalView allows the process to
run the dynamic loader to completion. Then, TotalView loads the dynamic symbols for the shared
library.

If desired, you can suppress the recording and use of dynamic symbols for shared libraries by starting TotalView
with the -no_dynamic option. Refer to the chapter -”TotalView Command Syntax” in the TotalView Reference Guide
for details on this startup option.

Changing Linkage Table Entries and LD_BIND_NOW
If you are executing a dynamically linked program, calls from the executable into a shared library are made using
the Procedure Linkage Table (PLT). Each function in the dynamic library that is called by the main program has an
entry in this table. Normally, the dynamic linker fills the PLT entries with code that calls the dynamic linker. This
means that the first time that your code calls a function in a dynamic library, the runtime environment calls the
dynamic linker. The linker then modifies the entry so that next time this function is called, it will not be involved.

This is not the behavior you want or expect when debugging a program because TotalView will do one of the
following:

 Place you within the dynamic linker (which you don't want to see).

 Step over the function.

And, because the entry is altered, everything appears to work fine the next time you step into this function.

On most operating systems, you can correct this problem by setting the LD_BIND_NOW environment variable.
For example:
setenv LD_BIND_NOW 1

This tells the dynamic linker that it should alter the PLT when the program starts executing rather than doing it
when the program calls the function.

You also need to enter pxdb -s on.

Shared Libraries Linking with the dbfork Library 573

Linking with the dbfork Library
If your program uses the fork() and execve() system calls, and you want to debug the child processes, you need
to link programs with the dbfork library.

NOTE: While you must link programs that use fork() and execve() with the TotalView dbfork library so
that TotalView can automatically attach to them when your program creates them, programs
that you attach to need not be linked with this library.

Linux or Mac OS X

Add the following argument or command-line option to the command that you use to link your programs:

 /usr/totalview/platform/lib/libdbfork_64.a

 -L/usr/totalview/platform/lib -ldbfork_64

where platform is one of the following: darwin-x86, linux-x86-64, or linux-arm64.

Here is an example:

cc -o program program.c -L/usr/totalview/linux-x86-64/lib -ldbfork_64

 574

Appendix D
Resources

 Classic TotalView Documentation on page 575

 Conventions on page 576

 Contacting Us on page 577

Classic TotalView Documentation 575

Classic TotalView Documentation
The following table describes all available documentation for Classic TotalView when using the classic UI. Much of
the information is still applicable if you are using the new UI, although features not yet supported in the current
interface must be accessed through the Command Line Interface (CLI) in the Command Line view.

Category Title Description HTML PDF Print

General Classic TotalView Documentation

Getting Started with Classic
TotalView Products

Introduces the basic features of
Classic TotalView, MemoryScape,
and ReplayEngine, with links for
more detailed information

X X

Classic TotalView Platforms Guide Defines platform and system
requirements for TotalView, Mem-
oryScape, and ReplayEngine

X X

Classic TotalView Evaluation Guide Brochure that introduces basic
Classic TotalView features

X X

User Guides

Classic TotalView User Guide Primary resource for information
on using the Classic TotalView
GUI and the CLI

X X

Debugging Memory Problems with
MemoryScape

How to debug memory issues,
relevant to both Classic TotalView
and the MemoryScape stand-
alone product

X X

Reverse Debugging with Replay
Engine

How to perform reverse debug-
ging using the embedded add-on
ReplayEngine

X X

Reference Guides

Classic TotalView Reference Guide A reference of CLI commands,
how to run TotalView, and plat-
form-specific detail

X X

New Features

Conventions 576

Conventions
Convention Meaning

[] Brackets are used when describing optional parts of a command.

arguments In a command description, text in italics represents information you enter. Elsewhere, italics
is used for emphasis.

Bold text In a command description, bold text represents keywords or options that must be entered
exactly as displayed. Elsewhere, it represents words that are used in a programmatic way
rather than their normal way.

Example text In program listings, this represents a program or something you’d enter in response to a
shell or CLI prompt. Bold text here indicates exactly what you should type. If you’re viewing
this information online, example text is in color.

Contacting Us 577

Contacting Us
Please see the TotalView support page if you have problems installing TotalView, have questions that are not
answered in the product documentation or on our Web site, or suggestions for new features or improvements.

If you are reporting a problem, please include the following information:

 The version of TotalView and the platform on which you are running TotalView.

 An example that illustrates the problem.

 A record of the sequence of events that led to the problem.

https://totalview.io/support

 578

Appendix E
Open Source Software Notice

TotalView publishes the open source software products it uses in the ATTRIBUTION.HTML file located in the
doc directory where you installed TotalView.

Compiling with Debugging Symbols 579

Compiling with Debugging Symbols
The first step in getting a program ready for debugging is to add your compiler's –g debugging command line
option. This option tells your compiler to generate symbol table debugging information; for example:

cc -g -o executable-name source-file

Here are a couple of general considerations about compiling your code:

The following table lists the procedures to compile C/C++ programs on Linux platforms.

The following table lists the procedures to compile Fortran programs on Linux platforms.

Compiler option What it does When to use it

Debugging symbols
option (usually –g)

Generates debugging information in the symbol table. Before debugging any pro-
gram with TotalView.

Optimization option
(usually –O)

Rearranges code to optimize your program's execution.

Some compilers let you use the –O option with the -g
option, but we advise against doing this before using
the debugger as unexpected results often occur.

After you finish debugging your
program.

Compiler Compiler Command Line

GCC C gcc -g source.c

GCC C++ g++ -g source.cxx

clang C clang -g source.c

clang C++ clang++ -gsource.cxx

Oracle Studio C cc -g source.c

Oracle Studio C++ CC -g source.cxx

Intel C++ Compiler icc -g source.cxx

PGI CC pgcc -g source.c

PGI C++ pgc++ -gsource.cxx

Compiler Compiler Command Line

Absoft Fortran 77 f77 -g program
.f f77 -g program.for

Absoft Fortran 90 f90 -g program.f90

Compiling with Debugging Symbols 580

The following table lists the procedures to compile programs on ARM64 platforms.

The following table lists the procedures to compile programs on Mac OS platforms.

Absoft Fortran 95 f95 -g program.f95

G77 g77 -g program.f

Intel Fortran Compiler ifort -g program.f

Lahey/Fujitsu Fortran lf95 -g program.f

PGI Fortran 77 pgf77 -g program.f

PGI Fortran 90 pgf90 -g program.f

Compiler Compiler Command Line

GCC C gcc -g program.c

GCC C++ g++ -g program.cxx

G77 g77 -g program.f

Compiler Compiler Command Line

Absoft Fortran 77 f77 -gprogram
.f f77 -gprogram.for

Absoft Fortran 90 f90 -gprogram.f90

Absoft Fortran 95 f95 -g program.f95

GCC C gcc -g program.c

GCC C++ g++ -gprogram.cxx

GCC Fortran gfortran -gprogram.f

clang C clang -g source.c

clang C++ clang++ -gsource.cxx

Intel C++ Compiler icc -g source.cxx

Intel Fortran Compiler ifort -g program.f

Compiler Compiler Command Line

Maintaining Debug Information Separate from an Executable 581

Maintaining Debug Information Separate
from an Executable
Because debug information embedded in an executable can be very large, some versions of Linux support strip-
ping this information from the executable and placing it into a separate file. This file is then referenced within the
executable using either a build ID section or a debug link section (or both) to identify the location and name of
the separate debug file. The stripped image file will normally take up less space on the disk, and if you want the
debug information, you can also install the corresponding .debug file.

The way this works with TotalView is controlled by a series of state variables and command line options discussed
in Controlling Separate Debug Files.

Create this file on Linux systems that have an objcopy that supports the - -add-gnu-debuglink and
- -only-keep-debug command-line options. If objcopy - -help mentions these options, creating this file is sup-
ported. See man objcopy for more details.

To create a separate file containing debug information:

1. Create a .debug copy of the executable or shared library. This second file is a regular executable but will
contain only debugging symbol table information, with no code or data.

2. Create a stripped copy of the image file, and add to the stripped executable a .gnu_debuglink section that
identifies the .debug file.

NOTE: The technique for creating a build ID separate debug information file is different
and more complex than that for creating a debug link. Consult your system doc-
umentation for how to create a separate debug information file using the build
ID method.

3. Distribute the stripped image and .debug files separately.

For example:

objcopy --only-keep-debug hello hello.debug
objcopy --strip-all hello
objcopy --add-gnu-debuglink=hello.debug hello

The code above uses objcopy to:

1. Create a separate debug file for an executable hello named hello.debug, containing only debug symbols
and information.

Maintaining Debug Information Separate from an Executable Controlling Separate Debug Files 582

2. Strip the debug information from the hello executable.

3. Add a .gnu_debuglink section to the hello executable.

Controlling Separate Debug Files
The following command line options and CLI variables control how TotalView handles separate debug files.

 Controls whether TotalView looks for either a build ID or a .gnu_debuglink section in image
files:

 Command line options -gnu_debuglink and -no_gnu_debuglink

 State variable TV::gnu_debuglink

This option basically turns on or off the functionality to support separate debug files.

 Sets the search path to use when looking for debug files referenced by a .gnu_debuglink
section:

 Command line option -gnu_debuglink_search_path

 State variable TV::gnu_debuglink_search_path

 Sets the search path to use when looking for debug files referenced by a .note.gnu.build-id
section:

 Command line option -gnu_debuglink_build_id_search_path

 State variable TV::gnu_debuglink_build_id_search_path

 Specifies the global debug directory:

 Command line option -gnu_debuglink_global_directory

 State variable TV::gnu_debuglink_global_directory

 Validates the separate .gnu_debuglink debug file’s checksum:

 Command line option -gnu_debuglink_checksum

 State variable TV::gnu_debuglink_checksum

Maintaining Debug Information Separate from an Executable Searching for the Debug Files 583

Searching for the Debug Files
If theTV::gnu_debuglink variable is true and if an image file contains either a .note.gnu.build-id or a .gnu_de-
bug_link section, TotalView searches for a separate debug information file that matches the image file. TotalView
will first search for the debug file using the .note.gnu.build-id section in the image file, if it exists. If that search
fails, TotalView will search for the debug file using the .gnu_debuglink section in the image file, if it exists.

For the build ID method:

1. The TV::gnu_debuglink_build_id search_path string is split at the colon (:) characters into a list of strings.

2. For each string on the list, "%D", "%G", and "%/" token expansion is performed to yield a list of directory
names to search.

3. The list of directories is searched for the debug file path named by the .note.gnu.build-id section. The
debug file path follows the pattern ".build-id/xx/yyy...yyy.debug", where xx are the first two hex characters
of the build ID bit string, and yyy...yyy is the rest of the bit string. Build ID bit strings are at least 32 hex
characters.

For separate debug files referenced by a .gnu_debuglink section:

1. The TV::gnu_debuglink_search_path string is split at the colon (:) characters into a list of strings.

2. For each string on the list, "%D", "%G", and "%/" token expansion is performed to yield a list of directory
names to search.

3. The list of directories is searched for the debug file named in the .gnu_debuglink section. If the file is
found, and the checksum matches or TV::gnu_debuglink_checksum is false, then the debug file is used.

For example, assume that the program’s pathname is /A/B/hello_world and the debug filename stored in the
.gnu_debuglink section of this program is hello_world.debug. If the TV::gnu_debuglink_global_directory vari-
able is set to /usr/lib/debug and the TV::gnu_debuglink_search_path is set to its default value, TotalView
searches for the following files:

1. /A/B/hello_world.debug

2. /A/B/.debug/hello_world.debug

3. /usr/lib/debug/A/B/hello_world.debug

 584

Appendix F
TotalView Glossary

This glossary defines terms specific to TotalView.

action point

A breakpoint. TotalView action points include standard breakpoints, watchpoints, eval points, and barriers.

action point identifier

A unique integer ID associated with an action point.

affected p/t set

The set of process and threads that are affected by the command. For most commands, this is identical to the
target P/T set, but in some cases it might include additional threads. (See p/t (process/thread) set for more
information.)

aggregated output

The CLI compresses output from multiple threads when they would be identical except for the P/T identifier.

arena

A specifier that indicates the processes, threads, and groups upon which a command executes. Arena specifi-
ers are p (process), t (thread), g (group), d (default), and a (all).

array slice

A subsection of an array, which is expressed in terms of an upper bound, a lower bound, and a stride. Dis-
playing a slice of an array can be useful when you are working with very large arrays.

autolaunching

When a process begins executing on a remote computer, TotalView can also launch a tvdsvr (TotalView
Debugger Server) process on the computer that will send debugging information back to the TotalView pro-
cess that you are interacting with.

automatic process acquisition

 585

TotalView detects the many processes that parallel and distributed programs run in, and attaches to them auto-
matically so you don’t have to attach to them manually. If the process is on a remote computer, automatic
process acquisition starts the -TotalView Debugger Server (tvdsvr).

barrier point

An action point specifying that processes reaching a particular location in the source code should stop and wait
for other processes to catch up.

command history list

A debugger-maintained list that stores copies of the most recent commands issued by the user.

conditional breakpoint

A breakpoint containing an expression. If the expression evaluates to true, program stops. TotalView does not
have conditional breakpoints. Instead, you must explicitly tell TotalView to end execution by using the $stop
directive.

control group

All the processes that a program creates. These processes can be local or remote. If your program uses pro-
cesses that it did not create, TotalView places them in separate control groups. For example, a client/server
program has two distinct executables that run independently of one another. Each would be in a separate con-
trol group. In contrast, processes created by the fork() function are in the same control group.

debugger server

See tvdsvr process.

debugger state

Information that TotalView or the CLI maintains to interpret and respond to user commands. This includes
debugger modes, user-defined commands, and debugger variables.

dpid

Debugger ID. The ID used for processes.

eval point

A point in the program where TotalView evaluates a code fragment without stopping the execution of the
program.

expression system

 586

A part of TotalView that evaluates C, C++, and Fortran expressions. An expression consists of symbols (possibly
qualified), constants, and operators, arranged in the syntax of a source language. Not all Fortran 90, C, and C++
operators are supported.

focus

The set of groups, processes, and threads upon which a CLI command acts. The current focus is indicated in the
CLI prompt (if you’re using the default prompt).

gid

The TotalView group ID.

GOI

The group of interest. This is the group that TotalView uses when it is trying to determine what to step, stop, and
so on.

group

When TotalView starts processes, it places related processes in families. These families are called “groups.”

group of interest

The primary group that is affected by a command. This is the group that TotalView uses when it is trying to deter-
mine what to step, stop, and so on.

HIA

The Heap Interposition Agent, used when memory debugging. The HIA intercepts calls to heap library functions
that allocate and deallocate memory by using the malloc() and free() functions and related functions such as cal-
loc() and realloc(). In most cases, the HIA is loaded automatically when your program starts. For some platforms,
however, the HIA needs to be explicitly linked to your application. See Linking Your Application with the Agent in
the TotalView User Guide.

host computer

The computer on which TotalView is running.

initial process

The process created as part of a load operation, or that already existed in the runtime environment and was
attached by TotalView or the CLI.

initialization file

An optional file that establishes initial settings for debugger state variables, user-defined commands, and any
commands that should be executed whenever TotalView or the CLI is invoked. Must be called .tvdrc.

 587

lockstep group

All threads that are at the same PC (program counter). This group is a subset of a workers group. A lockstep
group only exists for stopped threads. All threads in the lockstep group are also in a workers group. By definition,
all members of a lockstep group are in the same workers group. That is, a lockstep group cannot have members
in more than one workers group or more than one control group.

manager thread

A thread created by the operating system. In most cases, you do not want to manage or examine manager
threads.

native debugging

The action of debugging a program that is running on the same machine as TotalView.

pid

Depending on the context, this is either the process ID or the program ID. In most cases, this is the process ID.

POI

The process of interest. This is the process that TotalView uses when it is trying to determine what to step, stop,
and so on.

process group

A group of processes associated with a multi-process program. A process group includes program control groups
and share groups.

process/thread identifier

A unique integer ID associated with a particular process and thread.

process of interest

The primary process that TotalView uses when it is trying to determine what to step, stop, and so on.

program control group

A group of processes that includes the parent process and all related processes. A program control group
includes children that were forked (processes that share the same source code as the parent), and children that
were forked with a subsequent call to the execve() function (processes that don’t share the same source code as
the parent). Contrast this with share group.

program event

A program occurrence that is being monitored by TotalView or the CLI, such as a breakpoint.

 588

p/t (process/thread) set

The set of threads drawn from all threads in all processes of the target program.

pthread ID

The ID assigned by the Posix pthreads package. If this differs from the system TID, it is a pointer value that points
to the pthread ID.

satisfaction set

The set of processes and threads that must be held before a barrier can be satisfied.

satisfied

A condition that indicates that all processes or threads in a group have reached a barrier. Prior to this event, all
executing processes and threads are either running because they have not yet hit the barrier, or are being held at
the barrier because not all of the processes or threads have reached it. After the barrier is satisfied, the held
processes or threads are released, which means they can be run. Prior to this event, they could not run.

serial line debugging

A form of remote debugging where TotalView and the tvdsvr communicate over a serial line.

service thread

A thread whose purpose is to service or manage other threads. For example, queue managers and print spoolers
are service threads. There are two kinds of service threads: those created by the operating system or runtime sys-
tem and those created by your program.

share group

All the processes in a control group that share the same code. In most cases, your program has more than one
share group. Share groups, like control groups, can be local or remote.

single process server launch

A TotalView procedure that individually launches tvdsvr processes.

slice

A subsection of an array, which is expressed in terms of a lower bound, upper bound, and stride. Displaying a
slice of an array can be useful when you are working with very large arrays.

stop set

A set of threads that TotalView stops after an action point -triggers.

stride

 589

The interval between array elements in a slice and the order in which TotalView displays these elements. If the
stride is 1, TotalView displays every element between the lower bound and upper bound of the slice. If the stride
is 2, TotalView displays every other element. If the stride is -1, TotalView displays every element between the
upper bound and lower bound (reverse order).

target computer

The computer on which the process to be debugged is running.

target process set

The target set for those occasions when operations can only be applied to entire processes, not to individual
threads in a process.

target program

The executing program that is the target of debugger operations.

target p/t set

The set of processes and threads on which a CLI command acts.

thread of interest (TOI)

The primary thread affected by a command.

tid

The thread ID. On some systems (such as AIX where the threads have no obvious meaning), TotalView uses its
own IDs.

trigger set

The set of threads that can trigger an action point (that is, the threads upon which the action point was defined).

triggers

The effect during execution when program operations cause an event to occur (such as arriving at a breakpoint).

tvdsvr process

The TotalView Debugger Server process, which facilitates remote debugging by running on the same machine as
the executable and communicating with TotalView over a TCP/IP port or serial line.

type transformation facility (TTF)

Abbreviated as TTF. A TotalView subsystem that allows you to change the way information appears. For example,
an STL vector can appear as an array.

user thread

 590

A thread created by your program.

watchpoint

An action point that stops execution when the value of a memory location changes.

worker thread

A thread in a workers group. These are threads created by your program that perform the task for which you’ve
written the program.

workers group

All the worker threads in a control group. Worker threads can reside in more than one share group.

591

- -add-gnu-debuglink command-
line option 567, 581

Symbols
. (dot) current set indicator 353,

362

.rhosts file 309

/ slash in group specifier 356

& intersection operator 361

< first thread indicator (CLI) 353

- difference operator 361

| union operator 360

$address data type 173

$char data type 173

$character data type 173

$clid built-in variable 557

$code data type 173

$complex data type 173

$complex_16 data type 173

$complex_8 data type 173

$count built-in function 103, 138,
558

$countall built-in function 558

$countthread built-in function 558

$double data type 174

$double_precision data type 174

$duid built-in variable 557

$extended data type 174

$float data type 174

$hold built-in function 559

$holdprocess built-in function 559

$holdprocessall built-in
function 559

$holdstopall built-in function 559

$holdthread built-in function 559

$holdthreadstop built-in
function 559

$holdthreadstopall built-in
function 559

$holdthreadstopprocess built-in

function 559

$int data type 174

$integer data type 174

$integer_1 data type 174

$integer_2 data type 174

$integer_4 data type 174

$integer_8 data type 174

$logical data type 174

$logical_1 data type 174

$logical_2 data type 174

$logical_4 data type 174

$logical_8 data type 174

$long data type 174

$long_long data type 174

$mpiexec variable 321

$newval built-in function 113

$newval built-in variable 557

$newval intrinsic 111

$nid built-in variable 557

$oldval built-in function 113

$oldval built-in variable 557

$oldval intrinsic 111

$oldval watchpoint variable 113

$pid built-in variable 557

$processduid built-in variable 557

$real data type 174

$real_16 data type 174

$real_4 data type 174

$real_8 data type 174

$short data type 175

$stop built-in function 114, 559

$stop function 255

$stopall built-in function 559

$stopprocess built-in function 559

$stopthread built-in function 559

$string data type 175

$systid built-in variable 557

$tid built-in variable 557

$visualize built-in function 559

$void data type 175

$wchar data type 175

$wchar_s16 data type 175

$wchar_s32 data type 175

$wchar_u16 data type 175

$wchar_u32 data type 175

$wstring data type 175

$wstring_s16 data type 175

$wstring_s32 data type 175

$wstring_u16 data type 175

$wstring_u32 data type 175

Numerics
0xa110ca7f allocation pattern 525

0xdea110cf deallocation
pattern 525

A
-a command-line option 51, 242

passing arguments to
program 51

a width specifier 357

acquiring processes 311

action point
At Location 88
pending breakpoint 88

Action Point > Properties
command 94

Action Point ID attribute
definition 215

action points
and process/thread state 126
and templated code 86
CLI-available options 136
defined 83
disabling or deleting 63, 131
diving on 131
evaluation points 137
identifiers, never reused in a

session 249

 Index

loading 141
properties 83
saving 141
setting 86
sorting 130
state 133
suppressing and

unsuppressing 133
tutorial 62
unique IDs 83
viewing variables at

breakpoint 66
width 125

Action Points view 14

adapter_use option 309

adding command-line
arguments 42

adding environment variables 42

addr_not_at_start event 537

$address 173

Address not at start of block
problems 499

address space 488

addresses
specifying in variable

window 202

advancing
and holding processes 248
program execution 248

agent, inseting with env 545

agent. See heap debugging.
agent’s shared library 492

aggregate presentation of process
and thread attributes 204

aix_install_ tvheap_mr.sh script 547

aliases
built-in 245
group 245
group, limitations 245

alloc_not_in_heap event 537

alloc_null event 537

alloc_returned_bad_alignment
event 537

allocation
0xa110ca7f pattern 525

AMD GPU
process, defined 464

AMD GPUs

GPU thread selector 471

any_event event 537

arena specifiers
inconsistent widths 359

arenas
iterating over 352

-args command-line option 51

ARGS variable 242
modifying 242

ARGS_DEFAULT variable 242
clearing 242

arguments
passing to program 51
replacing 242

ARM64
compiling with debugging

symbols 566, 580

array of structure
dereferencing pointers 181

array of structures
displaying 179

array pointers 201

array services handle (ash) 314

Array Statistics view 186

arrays
checksum statistic 189
count statistic 188
denormalized count

statistic 189
evaluating expressions 144
infinity count statistic 189
lower adjacent statistic 188
maximum statistic 188
mean statistic 188
median statistic 188
minimum statistic 188
NaN statistic 189
quartiles statistic 188
slice, initializing 251
slice, printing 252
slicing in the Array Statistics

view 195
standard deviation

statistic 188
sum statistic 188
upper adjacent statistic 189

writing to file 253
zero count statistic 188

ash (array services handle 314

ash (array services handle) 314

ASM icon 349, 514, 525

assigning output to variable 240

assigning p/t set to variable 353

At Location dialog 88

attach options
enabling ReplayEngine 36

Attach to a Running Program
dialog 32

attaching
commands 39
configuring a debug

session 32
to job 311
to MPICH application 304
to MPICH job 304
to PE 311
to poe 312
to processes 32, 311
to RMS processes 313
to SGI MPI job 314, 315

attaching to programs 545

attaching to relatives 35

attributes
defined for processes and

threads 215
different views of 209
selecting 206
setting order of 206

auto_save_breakpoints
variable 141

automatic dereferencing 201

automatic process acquisition 304,
308

automatic variables 495

B
bad_alignment_ argument

event 537

barrier points 117, 119
defined (again) 117
satisfying 120
states 117
stopped process 122

barrierpoints

defined 249

bit painting
0xa110ca7f 525
0xdea110cf 525

branching around code 104

breakpoint operator 361

breakpoints
and MPI_Init() 311
automatically copied from

master process 304
conditional 102, 558
copy, master to slave 304
countdown 103, 558
defined 249
entering 314
example setting in multipro-

cess program 95
fork() 94
loading 141
not shared in separated

children 94
reloading 310
saving 141
set while running parallel

tasks 310
setting 85, 86, 253, 310
shared by default in

processes 94
sliding 87
thread-specific 557

built-in aliases 245

built-in functions
$count 103, 138
$countall 558
$countthread 558
$hold 559
$holdprocess 559
$holdprocessall 559
$holdstopall 559
$holdthread 559
$holdthreadstop 559
$holdthreadstopall 559
$holdthreadstopprocess 559
$stop 114, 559
$stopall 559
$stopprocess 559
$stopthread 559
$visualize 559

built-in variables 557
$clid 557

$duid 557
$newval 557
$nid 557
$oldval 557
$pid 557
$processduid 557
$string 173
$systid 557
$tid 557
forcing interpretation 558

C
C casting for Global Arrays 293, 294

C control group specifier 357

C/C++ statements
expression system 560

C++
compiling on x86-64 565, 579

CAF (CoArray Fortran) 299

Call Stack view 57, 64
responding to Processes and

Threads view actions 210

capture command 240

casting Global Arrays 293, 294

CGROUP variable 362

ch_lfshmem device 302

ch_mpl device 302

ch_p4 device 302, 305

ch_shmem device 302, 305

changing command-line
arguments 42

changing process thread set 365

changing program state 236

$char data type 173

$character data type 173

chasing pointers 201

check_guard_blocks action 538

checksum array statistic 189

CLI
components 234
in startup file 237
initialization 237
invoking program from shell

example 237
not a library 235
output 240
prompt 238

setting action points 136
starting 237
starting from command

prompt 237

CLI commands
assigning output to

variable 240
capture 240
dactions -load 141, 310
dactions -save 137, 141, 310
dattach 34, 39, 52, 305, 311, 312,

316
dattach mprun 316
dbarrier 117, 120
dbreak 255
ddelete 317
ddisable 122
default focus 365, 366
dfocus 365
dga 293
dgo 310, 314, 360
dgroups -add 362
dhold 118
dkill 239
dload 39, 238, 248
dout 367
dprint 201, 252
drerun 238
drun 238, 242
dsession 38
dset 242, 244
dstatus 121
dstep 353, 354, 360, 367
dunhold 118
dunset 242
duntil 367
dup 201
dwhere 201, 354, 360

CLI variables
ARGS 242
ARGS_DEFAULT 242

clearing 242
ARGS, modifying 242
auto_save_breakpoints 141
data format 200
EXECUTABLE_PATH 28, 31, 251
gnu_debuglink 568, 582
LINES_PER_SCREEN 241
parallel_configs 319, 320
PROMPT 244

SHARE_ACTION_POINT 94
ttf 182, 200
ttf_max_length 200
VERBOSE 236

CLI view 14

$clid built-in variable 557

cluster ID 557

CoArray Fortran (CAF) 299

$code data type 173

code constructs supported
C/C++ 560
Fortran 561

code fragments 557

code, branching around 104

columns
ascending and descending

order 208

command arguments 242
clearing example 242
passing defaults 242
setting 242

Command Line view 14, 57

command prompts 244
default 244
format 244
setting 244
starting the CLI from 237

command-line options 238
-a 242
–a 51
passing to debugger 51
passing to TotalView 51
-s startup 237
-sb 141

commands
Action Point > Properties 94
debugging, described 21
File -> Manage Sessions 46
Group > Attach 313, 314, 315
Group > Go 95, 310
Group > Kill 317
interrupting 236
mpirun 314
poe 304, 309
Process > Go 313, 314
Process > Out 367
Process > Run To 367
prun 313

rsh 309
Run To 372
scope 21
Tools > View Across 298
Tools > Visualize

Distribution 297
Tools > Watchpoint 113
totalview command 314
totalviewcli command 314
View > Dive In All 179
width 21
Window > Start Page 26

compiling
CUDA programs. See CUDA,

compiling.
on ARM64 566, 580
on x86-64 565, 579
programs 53
using -g option 53

compiling programs 541

$complex data type 173

$complex_8 data type 173

complex types
viewing in Data View 71

$complex_16 data type 173

concealed allocation 501

conditional breakpoints 102, 558

configure new debugging
session 28

continuous execution 236

Control Group attribute
definition 215

control groups
defined 345

control in parallel
environments 248

control in serial environments 248

controlling program execution 248

core dump, naming the signal that
caused 37

core files
debug session in Sessions

Editor 36
debugging 50, 51
multi-threaded 37

correcting programs 105

count array statistic 188

$countall built-in function 558

countdown breakpoints 103, 558

counter, loop 103

$countthread built-in function 558

cpu_use option 309

Cray
loading TotalView 290
starting the CLI 290
starting TotalView 290

Cray XT, XE, and XK debugging 290

creating new processes 238

Ctrl+C 236

CUDA
@parameter qualifier 437
@register storage qualifier 438
assigned thread IDs 430
CLI and operating on CUDA

threads 436
compiling a program for

debugging 426
compiling options 426
compiling Pascal GPU 426
compiling Tesla GPU 426
compiling Volta GPU 427
coordinate spaces, 4D and

5D 430
CUDA thread defined 430
data from CUDA thread,

displaying 432
execution, viewing 429
-g -G compiling option 426
GPU focus thread 430
GPU thread selector 430
host thread, viewing 431
logical coordinate space 430
MemoryChecker 41, 449
nvcc compiler 426
physical coordinate space 430
process, defined 422
PTX register, locations 438
ReplayEngine limitations 456
runtime variables,

supported 435
sample program 457
single-stepping GPU code 431
starting TotalView for CUDA

applications 427
storage qualifier, supported

types 433

troubleshooting 455
type casting 436
variables from CUDA thread,

displaying 432
variables, editing 436

current set indicator 353

custody changes 501

D
dactions command

-load 141, 310
-save 137, 141, 310

dangling pointer
problems 534

dangling pointers 497

dangling pointers and leaks
compared 498

data section 489

data types
see also data types
$address 173
$char 173
$character 173
$code 173
$complex 173
$complex_16 173
$double_precision 174
$extended 174
$float 174
$int 174
$integer 174
$integer_1 174
$integer_2 174
$integer_4 174
$integer_8 174
$logical 174
$logical_1 174
$logical_2 174
$logical_4 174
$logical_8 174
$long 174
$long_long 174
$real 174
$real_16 174
$real_4 174
$real_8 174
$short 175
$string 175
$void 175

$wchar 175
$wchar_s16 175
$wchar_s32 175
$wchar_u16 175
$wchar_u32 175
$wstring 175
$wstring_s16 175
$wstring_s32 175
$wstring_u16 175
$wstring_u32 175
predefined 173

Data View 13
adding global variables 166
adding variables to 69
capabilities 13
responding to Processes and

Threads view actions 210
viewing updated values 71
viewing variables 68

data_format variables 200

dattach command 34, 39, 52, 305,
311, 312, 316
mprun command 316

dbarrier command 117, 120

dbfork library 35

dbreak command 255

ddelete command 317

ddisable command 122

deadlocks 370

deallocate, defined 494

deallocation
0xdea110cf pattern 525

debug info in separate file 567, 581

Debug Options
Reverse Debugging 29, 32

-debug, using with MPICH 317

debugger initialization 237

debugger PID 247

Debugger Unique ID (DUID) 557

debugging
attributes in Processes and

Threads view 206
basic tutorial 53
command descriptions 21
core file 50
PE applications 309
script 51
SHMEM library code 294

Start Page 19
starting a session 19
toolbar 21
UPC programs 295

debugging attributes
different views of 209

debugging command-line
option 503

debugging commands
Run To 372

debugging core files
in the Debug Core File

dialog 36

debugging session 248
configure new 28

debugging techniques 316

debugging toolbar 9

default control group specifier 355

default focus 364

deleting
action points 131

denormalized count array
statistic 189

dereferencing
automatic 201
pointers 201

-detect_leaks 538

dfocus command
example 365

dga command 293

dgo command 310, 314, 360

dgroups command
-add 362, 363

dhold command 118

dialogs
preferences 4

difference operator 361

disabling
action points 131

-display_specifiers command-line
option 536

displaying
areas of memory 202
local variables 143
memory 202

Dive In All command 177, 179

diving 311

on action points 131

dkill command 239, 248

dload command 39, 238, 248
returning process ID 240

dlopen
and RTLD_DEEPBIND on

Linux 551

dnext command 367

docking and undocking views 5

documentation
Help view 16

Documents view 57, 80

double_dealloc event 537

$double_precision data type 174

dout command 367

dpid 247

dprint command 201, 252
using with CAF 300

drawers
opening and closing 5
Processes and Threads

attributes 10, 204

drerun command 238

drun command 238, 242

dsession command 38

dset command 242, 244

dstatus
thread options 213

dstatus command 121

dstep command 353, 354, 360, 367

DUID 557
of process 557

$duid built-in variable 557

dunhold command 118

dunset command 242

duntil command 367

dup commands 201

dwhere command 201, 354, 360

dynamic linker 572

dynamically allocate space 499

dynamically linked program 572

E
effects of parallelism on debugger

behavior 246

enabling watchpoints 110

entering input into the UI 58

env, inserting agent 545

environment variables
adding 42
before starting poe 309
for reverse connect 259
how to enter 42
MP_ADAPTER_USE 309
MP_CPU_USE 309
TOTALVIEW 303

errors
using ReplayEngine with Infini-

band MPIs 318

Evaluate Window
expression system 105

evaluating state 249

evaluation points
C constructs 560
defined 137, 249
examples 102
Fortran constructs 561
patching programs 103
setting 253

evaluation system limitations 106

evaluation, see also expression
system

-event_action command-line
option 537

examples
basic debugging 53
expression 53

exec() 35

EXECUTABLE_PATH variable 28, 31,
251
setting 250

executables
removing debug info 567, 581

execution
controlling 248

execve() 94
setting breakpoints with 94

existent operator 361

expression
basic debugging tutorial 53

expression system
and arrays 144
array elements 144

C/C++ declarations 560
C/C++ statements 560
defined 144
Fortran 561
Fortran intrinsics 562
functions and their issues 556
structures 144
templates and limitations 560
Tools > Evaluate Window 105

expressions 360

$extended data type 174

extending a block 500

F
F1 key for help 16

Fermi GPU, compiling for. See CU-
DA, compiling for Fermi

File > Manage Sessions
command 46

File menu 25

files
.rhosts 309
hosts.equiv 309
searching for 13

finding deallocation problems 499

finding heap heap allocation
problems 499

first thread indicator of < 353

$float data type 174

focus
as list 357
changing 365
pushing 365
restoring 365

fork_loop.tvd example
program 237

fork() 35, 94
setting breakpoints with 94

Fortran
CoArray support 299
compiling on x86-64 565, 579
expression system 561
in evaluation points 561
intrinsics in expression

system 562

Fortran casting for Global
Arrays 293, 294

Fortran, tracking memory 492

free not allocated problems 499

free_not_allocated event 537

Function attribute definition 215

function calls, in eval points 104

functions
in expression system 556
searching for 13

G
-g 503

-g -G option, for compiling CUDA
program. See CUDA, -g -G op-
tion.

-g -G option, for compiling ROCm
HIP program. See ROCm, -g -G
option.

-g option
compiling for debugging 53

g width specifier 357, 363

$GA cast 293, 294, 293

$ga cast 293, 294

Global Arrays 293
casting 293, 294
diving on type information 293

global variables
adding to Data View 166

gnu_debuglink 567, 581

gnu_debuglink command-line
option 569, 583

gnu_debuglink variable 568, 582

gnu_debuglink_global_directory
command-line option 568, 582

gnu_debuglink_global_directory
variable 568, 582

Go command 22, 64, 310, 313, 314,
369

GOI
defined 342

GPU. See CUDA.
Group > Attach Subset

command 313, 314, 315

Group > Go command 95, 123, 310

Group > Kill command 317

group aliases 245
limitations 245

Group by

thread name 211

Group menu 21

group name 356

group number 356

Group of Interest (GOI) 342

group stepping 369

group syntax 355
naming names 356

GROUP variable 363

group width
action points 129
of action points 125

group with the focus
see GOI 342

groups
adding an Attach to Program

debug session 36
behavior 369
defined 345
in Processes and Threads

view 206

-guard_blocks command-line
option 538

guard_corruption event 537

GUI namespace 243

H
Halt command 22, 369

header section 490

heap
defined 499

heap allocation problems 499

heap API 499
stopping allocation when

misused 499

heap debugging
attaching to programs 545
environment variable 545
IBM PE 549
interposition

defined 492
linker command-line

options 542
MPICH 549
tvheap_mr.a

library 547

heap library functions 492

held operator 361

held processes, defined 117

Help menu 16

Help view 16
F1 key 16

hexadecimal address, specifying in
variable window 202

-hoard_freed_memory command-
line option 538

hoarding
finding a multithreading

problem 527
finding dangling pointer

references 527

$hold built-in function 559

hold state
toggling 118

holding and advancing
processes 248

holding problems 123

$holdprocess built-in function 559

$holdprocessall built-in
function 559

$holdstopall built-in function 559

$holdthread built-in function 559

$holdthreadstop built-in
function 559

$holdthreadstopall built-in
function 559

$holdthreadstopprocess built-in
function 559

Hostname attribute definition 215

hosts.equiv file 309

hung processes
debugging session 32

I
I state indicator 34

IBM MPI 308

IBM SP machine 303, 304

idle state indicator 34

IDs
action points 83

image file, stripped copy 567, 581

inconsistent widths 359

Infiniband MPIs

possible errors 318
settings 318
with ReplayEngine 317

infinity count array statistic 189

Info view 68

initial process 246

initializing an array slice 251

initializing the CLI 237

Input/Output view 15, 58

$int data type 174

$integer_2 data type 174

$integer_4 data type 174

$integer_8 data type 174

interactive CLI 234

interface, new
docking and undocking 5
drawers 5
layout 4
main views 4
resizing behavior 5
Source views 6
Start Page 6

internal counter 103

interposition defined 492

interrupting commands 236

intersection operator 361

intrinsics
$newval 111
$oldval 111

invoking CLI program from shell
example 237

invoking TotalView on UPC 295

IP over the switch 309

iterating
over a list 359
over arenas 352

K
Kernel TID attribute definition 216

Kill command 22, 369

L
L lockstep group specifier 356, 357

LD_BIND_NOW envrionment
variable 572

LD_LIBRARY_PATH environment

variable 295

LD_PRELOAD heap debugging en-
vironment variable 545

leaks
concealed ownership 501
custody changes 501
defined 500
orphaned ownership 501
underwritten destructors

leaks 501
why they occur 500

leaks and dangling pointers
compared 498

LIBPATH and linking 547

libraries
debugging SHMEM library

code 294
shared 571

limitations
AMD (ROCm) and

ReplayEngine 480
CUDA and ReplayEngine 456

limitations in evaluation
system 106

LINES_PER_SCREEN variable 241

Linux-PowerLE 115

list_allocations action 538

list_leaks action 538

lists with inconsistent widths 359

lists, iterating over 359

load file 489

-load_session flag 51

loading
action points 141
file into debugger 50

loading sessions
Session Editor 38

local variables
in the Local Variables view 67

Local Variables view
adding variables to Data

View 13
displaying 143
viewing variables at

breakpoint 66

lockstep group
defined 345

L specifier 356

Logger 14, 57, 58

$logical data type 174

$logical_1 data type 174

$logical_2 data type 174

$logical_4 data type 174

$logical_8 data type 174

$long data type 174

$long_long data type 174

Lookup File or Function view 78

Lookup view 13

loop counter 103

lower adjacent array statistic 188

M
machine code section 490

make_actions.tcl sample
macro 253

MALLOCTYPE heap debugging en-
vironment variable 545, 548

Manage Debugging Sessions win-
dow
accessing 46

managing sessions
from File menu 46

map templates 182

maximum array statistic 188

-maxruntime command-line
option 538, 539

mean array statistic 188

median array statistic 188

memory
maps 488
pages 488

Memory Debugger
functions tracked 492

memory debugging
batch scripts 536
enable 503
event reports, generating 518
heap report 511
heap reports, generating 511
HIA 492
leak detection 505
leak reports 506, 512
leak reports, enabling 505
leak reports, MPI

programs 508

memory leak
defined 500

memory, displaying areas of 202

memscript memory debugging
script 536

menus
Group 21
Help 16
Local Variables context

menu 13
Process 21
show/hide views 271
Thread 21

message queue display 314, 317

messages from debugger,
saving 240

minimum array statistic 188

missing TID 353

mixing arena specifiers 360

more processing 241

more prompt 241

MP_ADAPTER_USE environment
variable 309

MP_CPU_USE environment
variable 309

MP_TIMEOUT 309

MPI
attaching to 314, 315
Infiniband, using with

ReplayEngine 317
memory debugging leak

reports 508
on IBM 308
on SGI 314
on Sun 315
starting on Cray 308
starting on SGI 314
starting processes 313
starting processes, SGI 314
troubleshooting 316

MPI_Init() 311

MPICH 302, 304
and heap debugging 549
and SIGINT 317
and the TOTALVIEW environ-

ment variable 303
attach from TotalView 304

attaching to 304
ch_lfshmem device 302, 305
ch_mpl device 302
ch_p4 device 302, 305
ch_shmem device 305
ch_smem device 302
diving into process 305
mpirun command 303
naming processes 306
obtaining 302
P4 305
-p4pg files 305
starting TotalView using 303
-tv command-line option 303
using -debug 317

mpirun command 303, 314

mpirun process 314

MPL_Init() 311
and breakpoints 311

mprun command 315, 316

multi-threaded core files 37

N
namespaces 243

TV:: 243
TV::GUI:: 243

naming MPICH processes 306

naming threads 211

NaNs
array statistic 189

navigating
to functions 75

navigation
diving and searching 58
using disabled action

points 133

Next command 22, 61, 369

$nid built-in variable 557

no_dynamic command-line
option 572

node ID 557

nodes, attaching from to poe 311

nonexistent operators 361

non-invasive 493

non-sequential program
execution 236

nvcc compiler, and CUDA. See CU-

DA, nvcc compiler.
NVIDIA. See CUDA.

O
$oldval built-in variable 557

omitting period in specifier 357

omitting width specifier 357

Open MPI
starting 312

opening a core file 39

operators
- difference 361
& intersection 361
| union 360
breakpoint 361
existent 361
held 361
nonexistent 361
running 361
stopped 361
unheld 361
watchpoint 361

options, for compiling CUDA. See
CUDA, compiling options

options, for compiling ROCm HIP
programs. See ROCm, compil-
ing options

orphaned ownership 501

Out command 22, 61, 369

outliers 189

output
assigning output to

variable 240
from CLI 240
only last command executed

returned 240
printing 240
returning 240
when not displayed 240

P
p width specifier 358

p.t notation 353

p/t sets
expressions 360
syntax 353

p/t syntax, group syntax 355

p4 listener process 305

-p4pg files 305

-p4pg option 305

parallel environments, execution
control of 248

parallel program, defined 246

parallel tasks, starting 310

parallel_configs variable 319, 320

parallel_support.tvd file 320

parameter values
returning 495

parameters
by reference 497
by value 497

parsing comments example 253

passing arguments 51

passing default arguments 242

passing pointer to memory to low-
er frames 496

passing pointers 496

patching
function calls 104
programs 103

PATH environment variable
entering for debugging

session 28

pathnames, setting in procgroup
file 305

PC attribute definition 215

PE 311
adapter_use option 309
applications 308
cpu_use option 309
from command line 310
from poe 310
options to use 309
switch-based

communication 309

PE applications 309

pending breakpoint, creating 88

phase, UPC 298

$pid built-in variable 557

pid specifier, omitting 357

poe
and mpirun 304
and TotalView 310
arguments 309
attaching to 311, 312

on IBM SP 305
placing on process list 312
required options to 309
running PE 310
TotalView acquires poe

processes 311

POI
defined 342

pointers
as arrays 201
chasing 201
dangling 497
dereferencing 201
dereferencing an array of

pointers 181
passing 496
realloc problem 500

pointer-to-shared UPC data 297

predefined data types 173

preferences 4

preferences toolbar 9

preload variables, by platform 545

preloading 492

primary thread, stepping
failure 370

printing an array slice 252

Procedure Linkage Table (PLT) 572

process
ID 557
numbers are unique 246
stepping 370
width specifier, omitting 357

Process > Go command 123, 313,
314

Process > Out command 367

Process > Run To command 367

process barrier breakpoint
changes when clearing 122
changes when setting 122
setting 118

process DUID 557

process groups
stepping 369, 370

Process Held attribute
definition 215

Process ID attribute definition 215

Process menu 21

Process of Interest (POI) 342

Process State attribute
definition 215

process width
action points 126
of action points 125

process with the focus
see POI 342

process_id.thread_id 353

process/set threads
saving 353

process/thread identifier 246

process/thread notation 246

process/thread sets 247
as arguments 352
changing focus 365
inconsistent widths 359
structure of 353
widths inconsistent 359

$processduid built-in variable 557

processes
acquiring 304, 305
acquisition in poe 311
attaching to 32, 311
attribute definitions 215
barrier point behavior 122
copy breakpoints from master

process 304
creating new 238
diving into 311
held defined 117
holding 117, 559
hung, debugging 32
in ptlist format 206
initial 246
released 117
releasing 117, 122
single-stepping 367
slave, breakpoints in 304
spawned 246
state and action points 126
stopped 117
stopped at barrier point 122
stopping intrinsic 559
stopping spawned 304
synchronizing 249
synchronizing with Run To 372
terminating 239
viewing and controlling 206

when stopped 370

Processes and Threads view 10, 56
ascending/descending column

order 208
attribute definitions 215
attributes 10, 206
different views of the

attributes 209
effect on other views 210
main description 206
tabular presentation 207
tree presentation 204

procgroup file 305
using same absolute path

names 305

Program arguments
in Debug New Program

dialog 29

program execution
advancing 248
controlling 248

Program Session dialog 28, 30, 288

program state, changing 236

program, mapping to disk 488

programs
compiling 53, 541
correcting 105
patching 103

prompt and width specifier 359

PROMPT variable 244

prun command 313

pthread ID 247

ptlist format 206

pushing focus 365

Q
QSW RMS applications

attaching to 313
starting 313

quartiles array statistic 188

R
R state indicator 34

RDMA optimizations
disabled with Infiniband 318

$real data type 174

$real_16 data type 174

$real_4 data type 174

$real_8 data type 174

realloc not allocated problems 499

realloc pointer problem 500

realloc problems 500

realloc_not_ allocated event 537

reallocation timing 497

recording file
configuring with

ReplayEngine 36

reference counting 501

relatives
attaching to 35

reloading breakpoints 310

remote login 309

replacing default arguments 242

Replay Mode attribute
definition 216

replay recording file debug
session 36

ReplayEngine
AMD limitations 480
and Infiniband MPIs 317
configuring in Session

Manager 36
CUDA limitations 456

ReplayEngine toolbar 9

reports
when to create 504

resetting command-line
arguments 42

resizing interface views 5

Restart command 22, 369

restarting
program execution 238

restoring focus 365

results, assigning output to
variables 240

returning parameter values 495

reverse connect
concepts 257
environment variables 259
examples 263
starting a session 261

reverse connections
tvconnect 256

Reverse debugging
debug options 29, 32

RMS applications
attaching to 313
starting 313

ROCm
assigned thread IDs 471
compiling options 468
data from ROCm work-item,

displaying 473
execution, viewing 470
-g -G compiling option 468
host thread, viewing 472
limitations with

ReplayEngine 480
starting TotalView for ROCm

applications 468
troubleshooting 479
variables from ROCm work-

item, displaying 473

rsh command 309

RTLD_DEEPBIND
and dlopen on Linux 551

Run To command 22, 61, 369
used to synchronize 372

running operator 361

running out of memory 500

running state indicator 34

S
-s command-line option 237

S share group specifier 355

S state indicator 34

S width specifier 357

sane command argument 237

satisfaction set 120

satisfied barrier 120

save_html_heap_ status_-
source_view action 538

save_memory_ debugging_file
action 538

save_text_heap_status_-
source_view action 538

saving
action points 141
messages 240

-sb option 141

scope
of debugging commands 21

scripting, memory debugging 536

scrolling
output 241

search
for an existing session 47
Lookup view 13

searching for files and functions 13

sections
data 489
header 490
machine code 490
symbol table 490

Session Editor
recent sessions 38

Session Manager
editing previous sessions 38

sessions
configure new debugging 28
deleting duplicates 48
editing 38
loading an existing 48
loading using -load_session

flag 51
loading using the CLI 38
managing 47
Start Page 19
starting 19, 55

set expressions 360

set indicator, uses dot 353, 362

setting
breakpoints 85, 253, 310
breakpoints while running 85
thread specific

breakpoints 557
timeouts 309

settings
for use of Infiniband MPIs and

ReplayEngine 318

SGROUP variable 363

Share Group attribute
definition 215

share groups
defined 345
S specifier 355

SHARE_ACTION_POINT variable 94

shared libraries 571

shell, example of invoking CLI
program 237

SHMEM library code
debugging 294

$short data type 175

show_backtrace item 536

show_backtrace_id item 536

show_block_address item 536

show_flags item 536

show_guard_details item 536

show_guard_id item 536

show_guard_status item 536

show_image item 536

show_leak_stats item 536

show_pc item 536

show_pid item 536

showing areas of memory 202

side 556

side-effects of functions in expres-
sion system 556

SIGINT signal 317

signals
that caused core dump 37

single-stepping
on primary thread only 367

slash in group specifier 356

sleeping state indicator 34

slices
UPC 295

slicing arrays 195

sliding breakpoints 87

SLURM 289

SMP machines 303

sorting
action points 130

Source Line attribute
definition 215

Source views 6, 57
responding to Processes and

Threads view actions 210

source-level breakpoints 85

space, dynamically allocating 499

spawned processes 246
stopping 304

specifier combinations 357

specifiers
and dfocus 359
and prompt changes 359
example 363
examples 359, 374

specifying groups 355

stack frame 201

stack frames 496
arranging 494

stack memory 494, 497

stack, compared to data
section 494

stacl frame
data blcok 495

standard deviation array
statistic 188

standard I/O
altering in Session Manager 42
redirecting 55

standard template library, see STL
Start Page 6, 19, 25, 27

starting 293
CLI 237
parallel tasks 310
TotalView 310

starting a debugging session 19

starting Open MPI programs 312

state
of action points 133
process/thread state and ac-

tion points 126

static internal counter 103

status bar, displaying state 60

Step command 22, 59, 369

stepping
see also single-stepping
at process width 370
at thread width 370
primary thread can fail 370
process group 369, 370
target program 248
thread group 370
threads 373
tutorial 59
workers 373

stepping a group 369

STL

map transformation 182

$stop built-in function 559

stop function 255

Stop Group
action point width setting 125

Stop Process
action point width setting 125

Stop Reason attribute
definition 215

Stop Thread
action point width setting 125

stop, defined in a multiprocess
environment 248

$stopall built-in function 559

stopped operator 361

stopped process 122

stopped state indicator 34

stopping
spawned processes 304

stopping execution on heap API
misue 499

$stopprocess built-in function 559

$stopthread built-in function 559

storage qualifier for CUDA. See CU-
DA, storage qualifier

strdup allocating memory 499

$string data type 175

stripped copy 567, 581

structures
expression evaluation 144

stty sane command 237

sum array statistic 188

Sun MPI 315

suppressing action points 133

switch-based communication 309
for PE 309

symbol table section 490

synchronizing execution 371

synchronizing processes 249

system PID 247

system TID 247

System TID attribute definition 216

systid 247

$systid built-in variable 557

T
T state indicator 34

t width specifier 358

tabular presentation of process
and thread attributes 207

target process/thread set 248

target program
stepping 248

target, changing 365

tasks
starting 310

Tcl
CLI and thread lists 235
version based upon 235

templated code
and breakpoints 86

templates
expression system 560
vectors 182

terminal window
starting CLI from 237

terminating processes 239

termination_ notification event 537

Tesla GPU, compiling for. See CU-
DA, Tesla GPU.

thread
width specifier, omitting 357

thread group
stepping 370

Thread Held attribute
definition 216

Thread ID
attribute definition 215

thread ID
about 247
assigned to CUDA threads. See

CUDA, assigned thread
IDs.

assigned to ROCm threads.
See ROCm, assigned
thread IDs.

system 557
TotalView 557

Thread Index attribute
definition 215

Thread menu 21

Thread Name attribute

definition 216

thread names
setting 212

thread numbers are unique 246

thread of interest 352, 353
defined 353

Thread of Interest (TOI) 342

Thread State attribute
definition 215

thread stepping 373
platforms where allowed 370

thread width
of action points 125

thread with the focus
see TOI 342

thread_name properties 213

threads
attribute definitions 215
displaying names 211
holding 119
in ptlist format 206
releasing 117
setting breakpoints in 557
single-stepping 367
state and action points 126
synchronizing with Run To 372
viewing and controlling 206
width specifier 354

thread-specific breakpoints 557

tid 247

$tid built-in variable 557

TID missing in arena 353

timeouts
during initialization 311
TotalView setting 309

timeouts, setting 309

timing of reallocations 497

TOI
defined 342

toolbars
described 9
showing 4
turning on text 4, 9

Tools > Evaluate Window
expression system 105

Tools > View Across command 298

Tools > Visualize Distribution

command 297

Tools > Watchpoint command 113

tooltips 68
viewing variable values 149

TotalView
and MPICH 303
invoking on CAF 299
invoking on UPC 295
starting 310

totalview command 314

TOTALVIEW environment
variable 303, 304

totalviewcli command 237, 238, 314

transformations
of STL types 181

tree presentation of process and
thread attributes 204

troubleshooting 577
MPI 316

TTF
and STL types 181

ttf variable 182, 200

ttf_ max_length variable 200

TV

mrnet_super_bushy 384

-tv command-line option 303

TV_REVERSE_CONNECT_DIR, env.
variable 259

TV:: namespace 243

TV::GUI:: namespace 243

tvconnect
reverse connection

command 256

TVCONNECT_OPTIONS, env.
variable 259

tvdsvr
editing command line for

poe 311
fails in MPI environment 317

TVHEAP_DEEPBIND
controlling RTLD_DEEPBIND on

Linux 552

tvheap_mr.a
aix_install_tvheap_mr.sh

script 547
and aix_malloctype.o 548

creating using poe 547
dynamically loading 547
libc.a requirements 547
pathname requirements 547
relinking executables on

AIX 548

tvheap_mr.a library 547

type strings
built-in 173

type transformation variable 182,
200

type transformations, creating 181

U
underwritten destructors 501

unheld operator 361

union operator 360

unique process numbers 246

unique thread numbers 246

unsuppressing action points 133

UPC
assistant library 295
phase 298
pointer-to-shared data 297
shared scalar variables 295
slicing 295
starting 295
viewing shared objects 295

UPC debugging 295

upper adjacent array statistic 189

User_TID attribute definition 216

using env to insert agent 545

V
values

updated in DataView 71

variables
adding to Data View 69
assigning p/t set to 353
CGROUP 362
global, viewing 166
GROUP 363
setting command output

to 240
SGROUP 363
ttf 182, 200
values update in Data View 69
viewing value at breakpoint 66

WGROUP 362, 363

vector transformation, STL 182

VERBOSE variable 236

verbosity level 314

View > Dive In All command 179

viewing shared UPC objects 295

Views
Documents 57

views
Action Points 14
CLI 14
Command Line 14
Data 13
docking and undocking 5
Help 16
initial layout in interface 4
Logger 14
Lookup 13
Processes and Threads 10, 206
showing and hiding 271

$visualize 559

$void data type 175

Volta, compiling for 427

W
W width specifier 357

watching memory 111

Watchpoint command 113

watchpoint operator 361

watchpoints
$newval watchpoint

variable 113
$oldval 113
alignment 114
conditional 113
copying data 113
defined 249
enabling 110
example of triggering when val-

ue goes negative 114
length compared to $oldval or

$newval 114
lowest address triggered 112
modifying a memory

location 107
monitoring adjacent

locations 112
multiple 112

on stack varaibles 109
PC position 112
platform differences 115
problem with stack

variables 111
supported platforms 115
triggering 107, 112
unconditional 108
watching memory 111

WGROUP variable 362, 363

When Done, Stop radio
buttons 120

When hit
action point width

property 125

When Hit, Stop radio buttons 119

width
action points, default 126
action points, explained 125
action points, group width 129
action points, process

width 126
action points, thread width 128
in debugging commands 21

width specifier 352
omitting 357

workers group
defined 345

workers group specifier 356

writing array data to files 253

Z
Z state indicator 34

zero count array statistic 188

Zombie state indicator 34

606

Index

	Contents
	An Introduction to TotalView
	Getting Started
	Introducing TotalView
	An Initial Look at the Interface
	Customizing the Interface
	A Tour of the Interface

	Starting TotalView and Creating a Debugging Session
	Debugging Commands
	Diving on Program Elements

	Creating and Managing Sessions
	Setting up Debugging Sessions
	Loading Programs from the Session Editor
	Loading Programs Using the CLI

	Options and Program Arguments
	Debug Options
	Program Environment
	Standard Input and Output
	Modifying Arguments in an Open Session

	Managing Sessions
	Starting a Session from your Shell
	Starting TotalView on a Script

	Basic Debugging
	Program Load and Navigation
	Load the Program to Debug
	Program Navigation

	Stepping and Executing
	Simple Stepping

	Setting and Running to a Breakpoint (Action Point)
	Set and Control Breakpoints
	Run Your Program and Observe the Call Stack

	Examining Data
	Viewing Variables in the Local Variables View
	Viewing Variables in the Data View

	Moving On

	Program Navigation
	Navigating from within the Source Pane
	Highlighting a String and the Find Function
	The Lookup File or Function View
	The Documents View

	Debugging Tools and Tasks
	Setting and Managing Action Points (Breakpoints)
	About Action Points
	Breakpoints
	Setting Source-Level Breakpoints
	Breakpoints at a Specific Location
	Pending Breakpoints
	Breakpoints at Execution
	Modifying a Breakpoint
	Setting Breakpoints When Using the fork()/execve() Functions

	Evalpoints
	Setting an Evalpoint
	Creating a Pending Evalpoint
	Modifying an Evalpoint
	Creating Conditional Breakpoints
	Patching Programs

	Watchpoints
	Creating Watchpoints
	Modifying Watchpoints
	Watching Memory
	Triggering Watchpoints
	Using Watchpoint Expressions
	Using Watchpoints on Different Architectures

	Barrier Points
	About Barrier Breakpoint States
	Setting a Barrier Breakpoint
	Creating a Satisfaction Set
	Hitting a Barrier Point
	Releasing Processes from Barrier Points
	Changing Settings and Disabling a Barrier Point
	Using Barrier Points

	Controlling an Action Point’s Width
	About an Action Point’s Width: Group, Process or Thread
	Setting the Action Point’s Width
	Action Point Width and Process/Thread State

	Managing and Diving on Action Points
	Sorting
	Diving
	Deleting, Disabling, and Suppressing
	Saving and Loading Action Points

	More on Action Points Using the CLI
	Saving Action Points to a File Using the CLI
	Suppressing and Unsuppressing Action Points

	Examining and Editing Data
	Viewing Data in TotalView
	About Expressions
	Using C++

	The Call Stack, Local Variables, and Registers Views
	The Call Stack View
	The Local Variables View
	The Registers View
	Viewing Call Stack Data
	Viewing Data in Fortran

	The Data View
	Adding Variables to the Data View
	Diving on Variables
	Working with Complex Variables in the Data View
	Editing an Expression
	Displaying Arrays
	Viewing Individual Elements in an Array of Structures
	Controlling STL Data Transformation
	Customizing the Data View

	The Array View
	Adding Arrays to the Array View
	Array Statistics and Visualization
	Configuring Arrays

	Using the CLI to Examine Data
	Changing the Display of Data
	Displaying Variables

	The Processes and Threads View
	Processes and Threads View Basics
	Customize the Display
	The Processes and Threads View in Relation to Other Views
	Displaying a Thread Name
	Thread Names in the UI
	Thread Properties
	Thread Options on dstatus

	Process and Thread Attributes

	Debugging Python
	Overview
	Python Debugging Requirements
	Python Version
	Limitations and Extensions:

	Starting a Python Debugging Session
	Debugging Python and C/C++ with TotalView
	Transforming the Stack

	Viewing and Comparing Python and C/C++ Variables
	Leveraging Other Debugging Technologies for Python Debugging
	Supported Python Extension Technologies for Stack Transformations

	Using the Command Line Interface (CLI)
	Access to the CLI
	Introduction to the CLI
	About the CLI and Tcl
	Integration of the CLI and the UI
	Invoking CLI Commands

	Starting the CLI in a Terminal Window
	Startup Example
	Starting Your Program

	About CLI Output
	‘more’Processing

	Using Command Arguments
	Using Namespaces
	About the CLI Prompt
	Using Built-in and Group Aliases
	How Parallelism Affects Behavior
	Types of IDs

	Controlling Program Execution Using CLI Commands
	Advancing Program Execution
	Using Action Points

	Examples of Using the CLI
	Setting the CLI EXECUTABLE_PATH Variable
	Initializing an Array Slice
	Printing an Array Slice
	Writing an Array Variable to a File
	Automatically Setting Breakpoints

	Reverse Connections
	About Reverse Connections
	Reverse Connection Environment Variables

	Starting a Reverse Connect Session
	Listening for Reverse Connections

	Reverse Connect Examples
	CLI Example
	MPI Batch Script Example

	Troubleshooting Reverse Connections
	Stale Files in the Reverse Connect Directory
	Directory Permissions
	User ID Issues
	Reverse Connect Directory Environment Variable

	Preferences
	About Preferences
	Action Points
	Display Settings
	Tool Bar
	Search Path
	Parallel Configuration
	Remote Connection Settings

	Parallel Debugging
	About Parallel Debugging in TotalView
	Parallel Program Execution Models
	Viewing Process and Thread State
	Controlling Program Execution
	TotalView Groups
	Synchronizing Execution with Barrier Points

	Configuring TotalView for Parallel Debugging

	Setting Up Parallel Sessions
	Parallel Program Setup in the UI
	Non-MPI Program Setup
	The SLURM Resource Manager
	Cray XT/XE/XK/XC Applications
	Global Arrays Applications (Classic UI Only)
	Shared Memory (SHMEM) Code
	UPC Programs
	CoArray Fortran (CAF) Programs

	MPI Program Setup
	MPICH Applications
	MPICH2 Applications
	Cray MPI Applications
	IBM MPI Parallel Environment (PE) Applications
	Open MPI Applications
	QSW RMS Applications
	SGI MPI Applications
	Sun MPI Applications
	Troubleshooting MPI Startup
	Using ReplayEngine with Infiniband MPIs
	MPI Startup Customizations

	Debugging OpenMP Applications
	OpenMP and the OMPD API
	OMPD Requirements

	OpenMP Setup and Configuration
	Enabling OpenMP Debugging
	Enabling Stack Filtering

	Running Your Program
	The Call Stack
	The OpenMP View

	Hybrid Programming: Combining OpenMP with MPI

	Controlling fork, vfork, and execve Handling
	The exec_handling and fork_handling Command Options and State Variables
	Exec Handling
	Fork Handling
	Example

	Group, Process, and Thread Control
	Overview
	Groups in TotalView
	What Is a Group?
	Types of Groups Created by TotalView
	How TotalView Creates Groups
	Executing a Single Share Group

	Arenas and P/T Sets
	Arena Specifiers in a P/T Set
	Process and Thread Width Specifiers in a P/T Set
	Group Specifiers in P/T Sets
	Arena Specifier Examples
	Using P/T Set Operators
	Setting and Creating Custom Groups
	Changing the P/T Using the dfocus Command

	Stepping and Program Execution
	Individual Execution Commands
	Executing at Group Width
	Executing at Process Width
	Executing at Thread Width
	Synchronizing Processes and Threads
	CLI Stepping Examples

	Scalability in HPC Computing Environments
	Configuring TotalView for Scalability
	Disable User-Thread Debugging
	Tune Dynamic Library Load Processing

	MRNet
	TotalView Infrastructure Models
	Using MRNet with TotalView

	Accessing TotalView Remotely
	TotalView Remote Connections
	About Remote Connections
	Configuring a Remote Connection
	Debugging on a Remote Connection

	TotalView Remote Display
	Remote Display Supported Platforms
	Remote Display Components
	Installing the Client
	Installing on Linux
	Installing on Microsoft Windows
	Installing on macOS

	Client Session Basics
	Working on the Remote Host

	Advanced Options
	Naming Intermediate Hosts
	Submitting a Job to a Batch Queuing System
	Setting Up Your Systems and Security
	Session Profile Management
	Batch Scripts
	tv_PBS.csh Script
	tv_LoadLeveler.csh Script

	GPU Debugging
	Debugging CUDA Programs
	NVIDIA CUDA Debugging Overview
	Installing the CUDA SDK Tool Chain
	Directive-Based Accelerator Programming Languages

	CUDA Debugging Model and Unified Display
	The TotalView CUDA Debugging Model
	Pending and Sliding Breakpoints
	Unified Source View and Breakpoint Display

	CUDA Debugging Tutorial
	Compiling for Debugging
	Starting a TotalView CUDA Session
	Controlling Execution
	Displaying CUDA Program Elements
	The GPU Status View
	Enabling CUDA Memory Checker Feature
	GPU Core Dump Support
	GPU Error Reporting

	CUDA Problems and Limitations
	Hangs or Initialization Failures
	CUDA and ReplayEngine
	Sample CUDA Program

	Debugging AMD ROCm Programs
	AMD ROCm Debugging Overview
	Installing the AMD Tool Chain

	AMD ROCm Debugging Model and Unified Display
	The TotalView AMD ROCm Debugging Model
	Disabling Deferred GPU Image Loading
	Pending and Sliding Breakpoints
	Unified Source View and Breakpoint Display

	AMD ROCm Debugging Tutorial
	Compiling for Debugging
	Starting a TotalView ROCm Session
	Controlling Execution
	Displaying ROCm Program Elements
	GPU Error Reporting

	AMD ROCm Problems and Limitations
	Hangs or Initialization Failures
	AMD GPU Debugging and ReplayEngine
	Sample HIP Program

	Memory Debugging
	About TotalView Memory Debugging
	Debugging Memory in TotalView
	About Program Memory
	How TotalView Intercepts Memory Data
	Your Program’s Data
	The Data Section
	The Stack
	The Heap

	Running a Memory Debugging Session
	Starting Memory Debugging in TotalView
	Memory Leak Detection
	Using the Leak Report

	Memory Heap Reports
	Using the Heap Report

	Corrupt Guard Block Reports
	Memory Event Reports
	The Memory Event Report View

	Memory Block Notification
	Memory Debugging Options
	Option: Painting Memory
	Option: Hoarding Memory Blocks
	Option: Guarding Allocated Memory

	Dangling Pointer Problems
	Dangling Pointers in the Local Variables and Data Views

	Memory Scripting
	display_specifiers Command-Line Option
	event_action Command-Line Option
	Other Command Line Options
	memscript Example

	Preparing Programs for Memory Debugging
	Compiling Programs for Memory Debugging
	Linking Your Application with the HIA
	Using env to Insert the HIA
	Installing tvheap_mr.a on AIX
	LIBPATH and Linking

	Using TotalView in Selected Environments
	MPICH
	IBM PE
	Mac OS
	Linux

	Appendices
	More on Expressions
	Calling Functions: Problems and Issues
	Using Built-in Variables and Statements
	Using TotalView Variables
	Using Built-In Statements

	Using Programming Language Elements
	Using C and C++
	Using Fortran

	Compiling for Debugging
	Compiling with Debugging Symbols
	Maintaining Debug Information Separate from an Executable
	Controlling Separate Debug Files
	Searching for the Debug Files

	Platform-Specific Topics
	Swap Space
	Shared Libraries
	Changing Linkage Table Entries and LD_BIND_NOW
	Linking with the dbfork Library

	Resources
	Classic TotalView Documentation
	Conventions
	Contacting Us

	Open Source Software Notice
	Compiling with Debugging Symbols
	Maintaining Debug Information Separate from an Executable
	Controlling Separate Debug Files
	Searching for the Debug Files

	TotalView Glossary

	Index

