
Debugging Memory Problems
with MemoryScape™

Version 2023.4
November, 2023

TotalView by Perforce
http://totalview.io

Use of the Documentation and implementation of any of its processes or techniques are the sole responsibility of the client, and Perforce
Software, Inc., assumes no responsibility and will not be liable for any errors, omissions, damage, or loss that might result from any use or
misuse of the Documentation.

ROGUE WAVE MAKES NO REPRESENTATION ABOUT THE SUITABILITY OF THE DOCUMENTATION. THE DOCUMENTATION
IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. ROGUE WAVE HEREBY DISCLAIMS ALL WARRANTIES AND CON-
DITIONS WITH REGARD TO THE DOCUMENTATION, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE,
INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PUR-
POSE, OR NONINFRINGEMENT. IN NO EVENT SHALL PERFORCE SOFTWARE, INC. BE LIABLE, WHETHER IN CONTRACT,
TORT, OR OTHERWISE, FOR ANY SPECIAL, CONSEQUENTIAL, INDIRECT, PUNITIVE, OR EXEMPLARY DAMAGES IN CONNEC-
TION WITH THE USE OF THE DOCUMENTATION.

The Documentation is subject to change at any time without notice.

ACKNOWLEDGMENTS

Copyright 2007-2023 by Rogue Wave Software, Inc., a Perforce company (“Rogue Wave”). All rights reserved.
Copyright 1998–2007 by Etnus LLC. All rights reserved.
Copyright 1996–1998 by Dolphin Interconnect Solutions, Inc.
Copyright 1993–1996 by BBN Systems and Technologies, a division of BBN Corporation.
All trademarks and registered trademarks are the property of their respective owners.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise without the prior written permission of Rogue Wave.

Perforce has prepared this manual for the exclusive use of its customers, personnel, and licensees. The information in
this manual is subject to change without notice, and should not be construed as a commitment by Perforce. Perforce
assumes no responsibility for any errors that appear in this document.
TotalView and TotalView Technologies are registered trademarks of Rogue Wave. TVD is a trademark of Rogue Wave.
Perforce uses a modified version of the Microline widget library. Under the terms of its license, you are entitled to use
these modifications. The source code is available at https://rwkbp.makekb.com/.
All other brand names are the trademarks of their respective holders.

https://rwkbp.makekb.com/

Contents
Checking for Problems . 2

Programs and Memory . 4

Behind the Scenes . 8

Your Program’s Data . 9
The Data Section . 9
The Stack. 9
The Heap . 13

Finding Heap Allocation Problems . 13
Finding Heap Deallocation Problems . 13
realloc() Problems . 13
Finding Memory Leaks . 14

Starting MemoryScape . 16
Using MemoryScape Options . 17
Preloading MemoryScape . 18

Understanding How Your Program is Using Memory 19

Finding free() and realloc() Problems 21
Event and Error Notification 21
Types of Problems . 23

Freeing Stack Memory . 23
Freeing bss Data . 23
Freeing Data Section Memory . 23
Freeing Memory That Is Already Freed . 23
Tracking realloc() Problems . 24
Freeing the Wrong Address . 24

Finding Memory Leaks . 25

Fixing Dangling Pointer Problems . 28
Dangling Pointers . 29

Batch Scripting and Using the CLI . 31

Batch Scripting Using tvscript 31
Using the dheap Command. 31

dheap Example . 32
Notification When free Problems Occur 32
Showing Backtrace Information: dheap -backtrace: 33
Guarding Memory Blocks: dheap -guards 33
Memory Reuse: dheap -hoard . 34
Writing Heap Information: dheap -export 35
Filtering Heap Information: dheap -filter 35
Checking for Dangling Pointers: dheap -is_dangling: 36
Detecting Leaks: dheap -leaks . 37
Block Painting: dheap -paint . 37
Red Zones Bounds Checking: dheap -red_zones 38
Deallocation Notification: dheap -tag_alloc 42

TVHEAP_ARGS . 42

Examining Memory .45
Block Properties . 47

Memory Contents Tab . 49
Additional Memory Block Information . 50

Filtering 51

Using Guard Blocks 51

Using Red Zones .53

Using Guard Blocks and Red Zones .54
Block Painting 54

Hoarding .56
Example 1: Finding a Multithreading Problem 56
Example 2: Finding Dangling Pointer References. 56

Debugging with TotalView .58
Starting MemoryScape. 61
Adding Programs and Files to MemoryScape. 65
Attaching to Programs and Adding Core Files 66
Stopping Before Finishing Execution . 66
Exporting Memory Data . 66

MemoryScape Information . 67
Where to Go Next . 67
Basic Options. 71
Advanced Options . 74

Halt execution at process exit (standalone MemoryScape only) 75
Halt execution on memory event or error 75
Guard allocated memory . 77
Use Red Zones to find memory access violations 78
Restricting Red Zones . 79
Customizing Red Zones . 79
Paint memory . 80
Hoard deallocated memory . 80

Where to Go Next . 81
Controlling Program Execution from the Home | Summary Screen 85
Controlling Program Execution from the Manage Processes Screen 85
Controlling Program Execution from a Context Menu. 85
Where to Go Next . 85
Information Types . 86
Process and Library Reports . 87
Chart Report. 87
Where to Go Next . 89
Error Notifications . 90
Deallocation and Reuse Notifications . 92
Where to Go Next . 93
Window Sections. 94
Block Information. 96
Bottom Tabbed Areas . 96
Where to Go Next . 96
Heap Status Source Report . 98
Heap Status Source Backtrace Report . 101
Where to Go Next . 101
Adding, Deleting, Enabling and Disabling Filters 103
Adding and Editing Filters. 104
Where to Go Next . 107
Examining Corrupted Memory Blocks . 108
Viewing Memory Contents . 110
Procedures for Exporting and Adding Memory Data 111

Using Saved State Information . 111
Where to Go Next . 112
Overview . 113
Obtaining a Comparison . 113
Memory Comparison Report. 114
Where to Go Next . 115
Saving Report Information . 117

Using Remote Display 120

Compiling Programs . 122

Linking with the dbfork Library . 123
dbfork on IBM AIX on RS/6000 Systems 123

Linking C++ Programs with dbfork . 123
dbfork and Linux or Mac OS X . 124
dbfork and SunOS 5 SPARC . 124

Ways to Start MemoryScape . 125
Attaching to Programs 126

Setting Up MPI Debugging Sessions 127
Debugging MPI Programs . 127
Debugging MPICH Applications . 129

Starting MemoryScape on an MPICH Job 129
Attaching to an MPICH Job . 130
Using MPICH P4 procgroup Files . 130

Starting MPI Issues . 131
Debugging IBM MPI Parallel Environment (PE) Applications. . . . 131

Using Switch-Based Communications 132
Performing a Remote Login . 132
Starting MemoryScape on a PE Program 132
Attaching to a PE Job . 133

Debugging LAM/MPI Applications . 133
Debugging QSW RMS Applications. 134

Starting MemoryScape on an RMS Job 134
Attaching to an RMS Job . 134

Debugging Sun MPI Applications. 134
Attaching to a Sun MPI Job . 134

Linking Your Application with the Agent 136

Using env to Insert the Agent . 139

Installing tvheap_mr.a on AIX . 140
LIBPATH and Linking . 140

Using MemoryScape in Selected Environments 142
MPICH . 142
IBM PE . 142
RMS MPI . 142
Mac OS . 143

Background 143
Calls to system() on Mac OS 143
Setting the Environment Variable TV_MACOS_SYSTEM 143

Linux . 144
dlopen and RTLD_DEEPBIND 144

display_specifiers Command-Line Option 146

event_action Command-Line Option 147

Other Command Line Options . 149
memscript Example 149

Invoking MemoryScape 150
Syntax . 150
Options . 150

1

Locating Memory Problems

It’s frequently stated that 60% or 70% of all programming errors are memory
related. So, while these numbers could be wrong, let’s assume that they are
right. While algorithmic errors often show themselves easily, memory errors
are far more subtle. You can reproduce an algorithmic error with a pre-
defined set of steps. In contrast, memory errors are seldom reproducible in
this way. Worse, the problems they cause happen randomly, and may not
occur every time a program is run.

Why are there so many memory errors? There are many answers. The pri-
mary reason is that programs are complicated, and the way in which memory
should be managed isn’t clear. Is a library function allocating its own memory,
or should the program allocate it? Once it is allocated, does your program
manage the memory or does the library? Something creates a pointer to
something, then the memory is freed without any knowledge that something
else is pointing to it. Or, and this is the most prevalent reason, a wide separa-
tion exists between lines of code, or the time when old code and new code
was written. And, of course, there’s always insufficient and inaccurate
documentation.

In addition, some apparent problems might be irrelevant. If the program
does not free the memory allocated for a small array, it doesn’t mean much.
Or, it can be more efficient not to free the memory since the operating sys-
tem will free it for you when the program ends. On the other hand, if the
program continually allocates memory without freeing it, it will eventually
crash because there is no more memory available.

 Checking for Problems

2

Checking for Problems
MemoryScape can help you locate many of your program’s memory prob-
lems. For example, you can:

• Stop execution when free(), realloc(), and other heap API problems
or actions occur

For example, if your program tries to free memory that it either can’t or
shouldn’t free, MemoryScape can stop execution. This lets you quickly
identify the statement causing the problem. For more information, see
“Finding free() and realloc() Problems” on page 21.

Or, after identifying a memory block, you can tell MemoryScape to stop
execution when your program either deallocates or reallocates it. For
more information, see “Deallocation and Reuse Notifications” on
page 92.

• List leaks

MemoryScape can display reports of your program’s leaks—leaks are
memory blocks that are allocated and are no longer referenced; that is,
the program no longer can access the memory block, which means that
memory is not available for any other use.

When your program allocates a memory block, MemoryScape creates
and records a backtrace for the block—a backtrace is a list of stack
frames. At a later time when you ask MemoryScape to display leak infor-
mation, MemoryScape also displays this backtrace. This means that
you’ll instantly know where your program allocated the memory block.
For more information, see “Finding Memory Leaks” on page 25.

• Locate memory written beyond the bounds of an allocation

MemoryScape can allocate memory immediately before and after the
blocks your program allocates. When MemoryScape adds these
blocks—called guard blocks—it also initializes them to a bit pattern. If
this bit pattern changes, MemoryScape sees the change when your pro-
gram deallocates the block, and stops execution.

MemoryScape can also check all guard blocks at any time during pro-
gram execution. For more information, see “Using Guard Blocks” on
page 51.

Another option is to use Red Zones, additional pages of memory allo-
cated before or after your block. MemoryScape can apply Red Zones to
your allocated blocks. If MemoryScape detects read or write access in
the Red Zone outside the bounds of your allocated block, it halts pro-
gram execution and notifies you of the underrun or overrun. For more
information see “Using Red Zones” on page 53.

• Paint allocated and deallocated blocks

When your program’s memory manager allocates or deallocates mem-
ory, MemoryScape can write a bit pattern into it. Writing this bit pattern
is called painting.

If your program tries to dereference a pointer through painted memory,
it may crash. Fortunately, MemoryScape will trap the action before your
program dumps core, allowing you to see where the problem occurs.
For more information, see “Block Painting” on page 54.

• Hold on to deallocated memory

 Checking for Problems

3

When you are trying to identify memory problems, holding on to mem-
ory after your program releases it can sometimes help locate problems
by forcing a memory error to occur at a later time. Holding onto freed
memory is called hoarding. For more information, see “Hoarding” on
page 56.

 Programs and Memory

4

Programs and Memory
When you run a program, your operating system loads the program into
memory and defines an address space in which the program can operate.
For example, if your program is executing in a 32-bit computer, the address
space is approximately 4 gigabytes.

An operating system does not actually allocate the memory in this address
space. Instead, operating systems memory map this space, which means that
the operating system relates the theoretical address space your program
could use with what it actually will be using. Typically, operating systems
divide memory into pages. When a program begins executing, the operating
system creates a map that correlates the executing program with the pages
that contain the program’s information. Figure 1 shows regions of a program
where arrows point to the memory pages that contain different portions of
your program.

Figure 1 also shows a stack containing three stack frames, each mapped to
its own page.

Similarly, the heap shows two allocations, each mapped to its own page. (This
figure vastly simplifies actual memory mapping, since a page can have many
stack frames and many heap allocations.)

NOTE >>This discussion is generally relevant to most computer archi-
tectures. For information specific to your system, check
your vendor documentation.

Figure 1: Mapping Program Pages

 Programs and Memory

5

The program did not emerge fully formed into this state. It had to be com-
piled, linked, and loaded. Figure 2 shows a program whose source code
resides in four files.

Running these files through a compiler creates object files. A linker then
merges these object files and any external libraries needed into a load file.
This load file is the executable program stored on your computer’s file
system.

When the linker creates the load file, it combines the information contained
in each of the object files into one unit. Combining them is relatively straight-
forward. The load file at the bottom of Figure 2 also details this file’s
contents, as this file contains a number of sections and additional informa-
tion. For example:

• Data section—contains static variables and variables initialized outside
of a function. Here is a small sample program that shows these
initializations:
int my_var1 = 10;
void main ()
{
 static int my_var2 = 1;
 int my_var3;
 my_var3 = my_var1 + my_var2;
 printf(“here’s what I’ve got: %i\n”, my_var3);
}
The data section contains the my_var1 and my_var2 variables. In con-
trast, the memory for the my_var3 variable is dynamically and automat-
ically allocated and deallocated within the stack by your program’s
runtime system.

• Symbol table section—contains addresses (usually offsets) to the
locations of routines and variables.

Figure 2: Compiling Programs

 Programs and Memory

6

• Machine code section—contains an intermediate binary representation
of your program. (It is intermediate because the linker has not yet resolved
the addresses.)

• Header section—contains information about the size and location of
information in all other sections of the object file.

When the linker creates the load file from the object and library files, it inter-
weaves these sections into one file. The linking operation creates something
that your operating system can load into memory. Figure 3 shows this
process.

Figure 3: Linking a Program

 Programs and Memory

7

MemoryScape can provide information about these sections and the
amount of memory your program is using. To obtain this information, use the
Memory Reports | Memory Usage and select Chart report, Figure 4.

While there are other memory usage reports, the Chart Report provides a
concise summary of how your program is using memory.

For information, see Task 5: “Seeing Memory Usage” on page 86.

Figure 4: Memory Usage Chart Report

 Behind the Scenes

8

Behind the Scenes
MemoryScape intercepts calls made by your program to heap library func-
tions that allocate and deallocate memory by using the malloc() and free()
functions and related functions such as calloc() and realloc(). The technique
it uses is called interposition. MemoryScape’s interposition technology uses
an agent routine to intercept calls to functions in this library. This agent rou-
tine is sometimes called the Heap Interposition Agent (HIA).

You can use MemoryScape with any allocation and deallocation library that
uses such functions as malloc() and free(). Typically, this library is called the
malloc library. For example, the C++ new operator is almost always built on
top of the malloc() function. If it is, MemoryScape can track it. Similarly, if
your Fortran implementation use malloc() and free() functions to manage
memory, MemoryScape can track Fortran heap memory use.

You can interpose the agent in two ways:

• You can tell MemoryScape to preload the agent. Preloading means that the
loader places an object before the object listed in the application’s loader
table.

When a routine references a symbol in another routine, the linker
searches for that symbol’s definition. Because the agent’s routine is the
first object in the table, your program invokes the agent’s routine
instead of the routine that was initially linked in.

On Linux and Sun, MemoryScape sets an environment variable that
contains the pathname of the agent’s shared library. For more informa-
tion, see “Using env to Insert the Agent” on page 139.

• If MemoryScape cannot preload the agent, you will need to explicitly link
it into your program. For details, see Creating Programs for Memory
Debugging,” on page 121.

If your program attaches to an already running program, you must
explicitly link this other program with the agent.

After the agent intercepts a call, it calls the original function. This means that
you can use MemoryScape with most memory allocators. Figure 5 shows
how the agent interacts with your program and the heap library.

Because MemoryScape uses interposition, memory debugging can be con-
sidered non-invasive. That is, MemoryScape doesn’t rewrite or augment your
program’s code, and you don’t have to do anything in your program. Because
the agent lives in the user space, it will add a small amount of overhead to
the program’s behavior, but it should not be significant.

Figure 5: Interposition

 Your Program’s Data

9

Your Program’s Data
Your program’s data resides in the following places:

• The Data Section

• The Stack

• The Heap

The Data Section

Your program uses the data section for storing static and global variables.
Memory in this section is permanently allocated, and the operating system
sets its size when it loads your program. Variables in this section exist for the
entire time that your program executes.

Errors can occur if your program tries to manage this section’s memory. For
example, you cannot free memory allocated to variables in the data section.
In general, data section errors are usually related to not understanding that
the program cannot manage data section memory.

The Stack
Memory in the stack section is dynamically managed by your program or
operating system’s memory manager. Consequently, your program cannot
allocate memory in the stack or deallocate memory in it.

The stack differs from the data section in that your program implicitly man-
ages its space. What’s in it one minute might not be there a minute later.
Your program’s runtime environment allocates memory for stack frames as
your program calls routines and deallocates these frames when execution
exits from the routine.

A stack frame contains control information, data storage, and space for
passed-in arguments (parameters) and the returned value (and much more).
Figure 6 shows three ways in which a compiler can arrange stack frame
information.

NOTE >>“Deallocates” means that your program tells a memory man-
ager that it is no longer using this memory. The next time
your program calls a routine, the new stack frame over-
writes the memory previously used by other routines. In
almost all cases, deallocated memory, whether on the stack
or the heap, just hangs around in its pre-deallocation state
until it gets reassigned.

 Your Program’s Data

10

In this figure, the left and center stack frames have different positions for the
parameters and returned value. The stack frame on the right is a little more
complicated. In this version, the parameters reside in a stack memory area
that doesn’t belong to either stack frame.

If a stack frame contains local (sometimes called automatic) variables, where
is this memory placed? If the routine has blocks in which memory is allo-
cated, where on the stack is this memory for these additional variables
placed? Although there are many variations, Figure 7 shows two of the more
common ways to allocate memory.

The blocks on the left show a data block allocated within a stack frame on a
system that ignores your routine’s block structure. The compiler figures how
much memory your routine needs, and then allocates enough memory for all
of a routine’s automatic variables. These kinds of systems minimize the time
necessary to allocate memory. Other systems dynamically allocate the mem-
ory required within a routine as the block is entered, and then deallocate it as
execution leaves the block. (The blocks on the right show this.) These sys-
tems minimize a routine’s size.

As your program executes routines, routines call other routines, placing addi-
tional routines on the stack. Figure 8 shows four stack frames. The shaded
areas represents local data.

Figure 6: Placing Parameters Figure 7: Local Data in a Stack Frame

 Your Program’s Data

11

What happens when a program passes a pointer to memory in a stack frame
to lower frames? Figure 9 shows a program passing a pointer to memory in
stack frame 1 down to lower stack frames.

In this figure, the arrows on the left represent an address contained within a
pointer, an address that is passed down the stack. The lines and arrow on
the right indicate the place to which the pointer is pointing. A pointer to
memory in frame 1 is passed to frame 2, which passes the pointer to frame

3, and then to frame 4. In all frames, the pointer points to a memory location
in frame 1. Stated in another way, the pointers in frames 2, 3, and 4 point to
memory in another stack frame. This is the most efficient way for your pro-
gram to pass data from one routine to another since your program passes
the pointer instead of the actual data. Using the pointer, the program can
both access and alter the information that the pointer is pointing to.

Because the program’s runtime system owns stack memory, you cannot free
it. Instead, your program’s runtime system frees it when it pops a frame from
the stack.

One of the reasons for memory problems is that it may not be clear which
component owns a variable’s memory. For example, Figure 10 shows a rou-
tine in frame 1 that has allocated memory in the heap, and which passes a
pointer to that memory to other stack frames.

Figure 8: Four Stack Frames

Figure 9: Passing Pointers

NOTE >>Sometimes you read that data can be passed “by-value”
(which means copying it) or “by-reference” (which means
passing a pointer). This really isn’t true. Something is always
copied. “Pass by reference” means that instead of copying
the data, the program copies a pointer to the data.

Figure 10: Allocating a Memory Block

 Your Program’s Data

12

If the routine executing in frame 4 frees this memory, all pointers to that
memory are dangling; that is, they point to deallocated memory. If the pro-
gram’s memory manager reallocates this heap memory block, the data
accessible by all the pointers is both invalid and wrong. Note that if the mem-
ory manager doesn’t immediately reuse the block, the data accessed through
the pointers is still correct.

The timing of the reallocation and reuse of a block by another allocation
request means there is no guarantee that the data is correct when the pro-
gram accesses the block, and there is never a pattern to when the block’s
data changes. Consequently, the problem occurs only intermittently, which
makes it nearly impossible to locate. Worse, development systems usually
are not as memory stressed as production systems, so the problem may
occur only in the production environment.

Another common problem occurs when you allocate memory and assign its
location to an automatic variable, shown in Figure 11.

If frame 4 returns control to frame 3 without deallocating the heap memory it
created, this memory is no longer accessible, and your program can no lon-
ger use this memory block. It has leaked this memory block.

MemoryScape can tell you about all of your program’s leaks. For information
on detecting leaks, see “Finding Memory Leaks” on page 25.

Figure 11: Allocating a Block from a Stack Frame

NOTE >>If you have trouble remembering the difference between a
leak and a dangling pointer, the following figure may help.
In both cases, your program allocates heap memory, and
the address of this memory block is assigned to a pointer. A
leak occurs when the pointer gets deleted, leaving a block
with no reference. In contrast, a dangling pointer occurs
when the memory block is deallocated, leaving a pointer
that points to deallocated memory. Both are shown in Fig-
ure 12.

Figure 12: Leaks and Dangling Pointers

 Your Program’s Data

13

The Heap
The heap is an area of memory that your program uses when it wants to
dynamically allocate space for data. While using the heap gives you a consid-
erable amount of flexibility, your program must manage this resource. That
is, the program must explicitly allocate and deallocate this space. In contrast,
the program does not allocate or deallocate memory in other areas.

Because allocations and deallocations are intimately linked with your pro-
gram’s algorithms and, in some cases, the way the program uses this
memory is implicit rather than explicit, problems associated with the heap
are the hardest to find.

Finding Heap Allocation Problems

Memory allocation problems are seldom due to allocation requests. Because
an operating system’s virtual memory space is large, allocation requests usu-
ally succeed. Problems most often occur if you are either using too much
memory or leaking it. Although problems are rare, you should always check
the value returned from calls to allocation functions such as malloc(), cal-
loc(), and realloc(). Similarly, you should always check whether the C++ new
operator returns a null pointer. (Newer C++ compilers throw a bad_alloc
exception.) If your compiler supports the new_handler operator, you can
throw your own exception.

Finding Heap Deallocation Problems

MemoryScape can let you know when your program encounters a problem
in deallocating memory. Some of the problems it can identify are:

• free() not allocated: An application calls the free() function by using an
address that is not in a block allocated in the heap.

• realloc() not allocated: An application calls the realloc() function by
using an address that is not in a block allocated in the heap.

• Address not at start of block: A free() or realloc() function receives a
heap address that is not at the start of a previously allocated block.

If a library routine uses the program’s memory manager (that is, it is using the
heap API) and a problem occurs, MemoryScape still locates the problem. For
example, the strdup() string library function calls the malloc() function to
create memory for a duplicated string. Since the strdup() function is calling
the malloc() function, MemoryScape can track this memory.

MemoryScape can stop execution just before your program misuses a heap
API operation. This lets you see what the problem is before it actually occurs.
(For a reminder, see “Behind the Scenes” on page 8.)

realloc() Problems

The realloc() function can either extend a current memory block, or create a
new block and free the old. When it creates a new block, it can create prob-
lems. Although you can check to see which action occurred, you need to
code realloc() usage defensively so that problems do not occur. Specifically,
you must change every pointer pointing to the memory block that was reallo-
cated so that it points to the new one. Also, if the pointer doesn’t point to the
beginning of the block, you need to take some corrective action.

NOTE >>When Memory Scape is used with TotalView, execution
stops before your program’s heap manager deallocates
memory, you can use the Thread > Set PC command to set
the PC to a line after the free() request. This means that you
can continue debugging past a problem that might cause
your program to crash. In this case, the problem is solved
while in the debugger. You still need to fix the problem.

 Your Program’s Data

14

In Figure 13, two pointers are pointing to a block. After the realloc() function
executes, ptr1 points to the new block. However, ptr2 still points to the orig-
inal block, a block that a program deallocated and returned to the heap
manager.

If you use block painting, MemoryScape can initialize the first block with a bit
pattern. If your program is able to display the contents of this block to you,
you’ll be able to see what kind of problem occurred.

Finding Memory Leaks

A memory “leak” is a block of memory that a program allocates that is no lon-
ger referenced. (Technically, there’s no such thing as a memory leak. Memory
doesn’t leak and can’t leak.) For example, when your program allocates mem-
ory, it assigns the block’s location to a pointer. A leak can occur if one of the
following occurs:

• You assign a different value to that pointer.

• The pointer was a local variable and execution exited from the block.

If your program leaks a lot of memory, it can run out of memory. Even if it
doesn’t run out of memory, your program’s memory footprint becomes
larger. This increases the amount of paging that occurs as your program exe-
cutes. Increased paging makes your program run slower.

Here are some of the circumstances in which memory leaks occur:

• Orphaned ownership—Your program creates memory but does not
preserve the address so that it can deallocate it at a later time.

The following example makes this (extremely) obvious:
char *str;
for(i = 1; i <= 10; i++)
{
 str = (char *)malloc(10*i);
}
free(str);
In the loop, your program allocates a block of memory and assigns its
address to str. However, each loop iteration overwrites the address of
the previously created block. Because the address of the previously
allocated block is lost, its memory can never be made available to your
program.

Figure 13: realloc() Problem

 Your Program’s Data

15

• Concealed allocation—Creating a memory block is separate from using
it.

Because all programs rely on libraries in some fashion, you must under-
stand what responsibilities you have for allocating and managing mem-
ory. As an example, contrast the strcpy() and strdup() functions. Both
do the same thing—they copy a string. However, the strdup() function
uses the malloc() function to create the memory it needs, while the
strcpy() function uses a buffer that your program creates.

In many cases, your program receives a handle from a library. This han-
dle identifies a memory block that a library allocated. When you pass
the handle back to the library, it knows which memory block contains
the data you want to use or manipulate. There may be a considerable
amount of memory associated with the handle, and deleting the handle
without telling the library to deallocate the memory associated with the
handle leaks memory.

• Changes in custody—The routine creating a memory block is not the
routine that frees it. (This is related to concealed allocation.)

For example, routine 2 asks routine 1 to create a memory block. At a
later time, routine 2 passes a reference to this memory to routine 3.
Which of these blocks is responsible for freeing the block?

This type of problem is more difficult than other types of problems in
that it is not clear when your program no longer needs the data. The
only thing that seems to work consistently is reference counting. In
other words, when routine 2 gets a memory block, it increments a
counter. When it passes a pointer to routine 3, routine 3 also incre-
ments the counter. When routine 2 stops executing, it decrements the
counter. If it is zero, the executing routine frees the memory. If it isn’t
zero, another routine frees it at another time.

• Underwritten destructors—When a C++ object creates memory, it must
have a destructor that frees it. No exceptions. This doesn’t mean that a
block of memory cannot be allocated and used as a general buffer. It just
means that when an object is destroyed, it needs to completely clean up
after itself; that is, the program’s destructor must completely clean up its
allocated memory.

For more information, see “Finding free() and realloc() Problems” on
page 21.

 Starting MemoryScape

16

Starting MemoryScape
On most architectures, there is not much you need to do to prepare your
program for memory debugging. In most cases, just compile your program
using the -g command-line option. In some cases, you may need to link your
program with the MemoryScape agent. (See Creating Programs for Memory
Debugging,” on page 121 for more information.)

Here is how you start MemoryScape:

1. Start MemoryScape from a shell window. On a Macintosh, depending
upon how it was installed, you can start it using the MemoryScape pro-
gram icon.

2. If you didn’t specify a program name on the command line, select Add
new program, Figure 14.

3. If you need to, select your memory debugging options. In most cases,
the defaults are fine. In some cases, you may want to select Low,
Medium, High, or Extreme. If you need finer control, select the
Advanced Options button, Figure 15. For more information, see Task
3: “Setting MemoryScape Options” on page 71.

4. After setting options, MemoryScape displays a screen that lets you start
program execution, Figure 16.

Figure 14: Add Programs to Your MemoryScape Session

Figure 15: Memory Debugging Options

 Starting MemoryScape

17

Whenever your program is stopped—which happens when you halt the pro-
gram, when a memory problem occurs, or just before the program exits—
MemoryScape can create a report that describes leaks or one that shows or
describes currently allocated memory blocks.

Using MemoryScape Options

Before your program begins execution, you can set other options by select-
ing controls in the Memory Debugging Options screen show in Figure 15.
(Some of these options can be set at other times.) Here’s a summary of these
options:

• Halt execution at process exit—Stops execution before your program
exits. This lets you analyze the memory information that MemoryScape
has collected. If the program does finish executing, MemoryScape
discards this memory information, and you can no longer view its
reports.

• Halt execution on memory event or error— Stops execution and
notifies you if a heap event such as a deallocation or a problem occurs.
This is called event notification. (See “Event and Error Notification” on
page 21 for more information.) By default, this is set to On.

• Guard allocated memory—Surrounds allocations with a small amount
of additional memory. By default, it uses 8 bytes of memory. It also writes
a pattern into this memory. These additional memory blocks are called
guard blocks. If your program overwrites these blocks, you can tell that a
problem occurred either by asking for a report or by an event notification
when your program deallocates a guarded block.

• Use Red Zones to find memory access violations—Adds a Red Zone
to your allocated blocks. The Red Zone is an additional page of memory
located either before or after your block. If MemoryScape detects access
in the Red Zone that is outside the bounds of your allocated block, it
halts execution of your program and notifies you of the underrun or
overrun. For more information see “Using Red Zones” on page 53.

• Paint memory—Paints allocated and deallocated memory and the
pattern that MemoryScape uses when it paints this memory. For more
information, see “Finding free() and realloc() Problems” on page 21 and
Task 3: “Setting MemoryScape Options” on page 71.

Figure 16: Program Created Screen

 Starting MemoryScape

18

• Hoard deallocated memory—Retains deallocated memory blocks, how
much memory to use for these blocks, and the number of blocks to
retain. For more information, see Task 3: “Setting MemoryScape
Options” on page 71.

Preloading MemoryScape
MemoryScape must be able to preload your program with its agent. In many
cases, it does this automatically.However, MemoryScape cannot preload the
agent for applications that run on IBM RS/6000 platforms. For more informa-
tion, see “Creating Programs for Memory Debugging” on page 121.

 Understanding How Your Program is Using Memory

19

Understanding How Your
Program is Using Memory
MemoryScape can help you understand how your program is using memory
in these ways:

• Its Memory Usage reports show how much memory your program’s
processes are using. (See Task 5: “Seeing Memory Usage” on page 86.)

• Its compare feature displays the differences between your program’s
current memory state and saved memory data or the differences
between two sets of saved memory data. (See Task 13: “Comparing
Memory” on page 113.)

• Its heap status reports tell you how much memory your program
allocated and where it was allocated. (See Task 8: “Obtaining Detailed
Heap Information” on page 97.)

You can examine imported memory state information in the same way as the
memory for a live process. For example, you can look for leaks, graphically
display the heap, and so on.

Use the Export Memory Data command on the left side of many screens
when you want to save memory data, Figure 17.

At a later time, you can import this data back into MemoryScape using the
Add memory debugging file command, which is on the Home | Add Pro-
gram screen.

MemoryScape treats this imported information in nearly the same way as
the information it has accumulated for a live process. After selecting Mem-
ory Reports | Memory Comparisons, MemoryScape displays a screen
containing all processes and imported files,Figure 18.

Figure 17: Memory Reports Commands

 Understanding How Your Program is Using Memory

20

)

After you select two processes, MemoryScape can display the differences
between this information, Figure 19.

Figure 18: Select Processes and Files Figure 19: Memory Comparison Report

 Finding free() and realloc() Problems

21

Finding free() and realloc()
Problems
MemoryScape detects problems that occur when you allocate, reallocate,
and free heap memory.

This memory is usually allocated by the malloc(), calloc(), and realloc() func-
tions, and deallocated by the free() and realloc() functions. In C++,
MemoryScape tracks the new and delete operators. If your Fortran pro-
grams and libraries use the heap API, MemoryScape tracks their dynamic
memory use. Some Fortran systems use the heap API for assumed-shape,
automatic, and allocatable arrays. See your system’s man pages and other
documentation for more information.

Event and Error Notification
There are a number of events that can cause MemoryScape to stop your pro-
gram’s execution, and you can control which of these will actually halt
execution by selecting the Advanced button in the Halt execution area of the
Memory Debugging Options screen, Figure 20.

When one of these errors occurs, MemoryScape places event indicators by
the process and at the top of the window, Figure 21.

When you click on one of these indicators, MemoryScape displays the Man-
age Processes | Process Events screen, Figure 22.

Figure 20: Memory Error Notification Dialog Box

Figure 21: Event Indicators

 Event and Error Notification

22

This screen contains the following kinds of information:

• The bold information reports the type of error or event that occurred.

• The Event Location tab contains the function backtrace if the error or
event is related to a block allocated on the heap. This is the backtrace
that exists when the event occurred. Depending upon the problem, you
may also want to examine the information in the next two tabs.

Figure 22: Process Event Screen

 Event and Error Notification

23

• The Block Details tab displays this information in a manner similar to
that shown in a graphical heap display.

• MemoryScape retains information about the backtrace that existed
when your program allocated and deallocated the memory block. Select
which to display using either the Allocation Location or Deallocation
Location tab.

If a memory error occurred, the deallocation backtrace is often the
same as the backtrace shown in the Event Location tab. If the memory
error occurs after your program deallocated this memory, the back-
traces are different.

Types of Problems
This section presents some trivial programs that illustrate some of the free()
and realloc() problems that MemoryScape detects. The errors shown in
these programs are obvious. Errors in your program are, of course, more
subtle.

Freeing Stack Memory

The following program allocates stack memory for the stack_addr variable.
Because the memory was allocated on the stack, the program cannot deallo-
cate it.
int main (int argc, char *argv[])
{
 void *stack_addr = &stack_addr;
 /* Error: freeing a stack address */
 free(stack_addr);
 return 0;
}

Freeing bss Data

The bss section contains uninitialized data. That is, variables in this section
have a name and a size but they do not have a value. Specifically, these vari-
ables are your program’s uninitialized static and global variables. Because
they exist in a data section, your program cannot free their memory.

The following program tries to free a variable in this section:
static int bss_var;

int main (int argc, char *argv[])
{
 void *addr = (void *) (&bss_var);
 /* Error: address in bss section */
 free(addr);
 return 0;
}

Freeing Data Section Memory

If your program initializes static and global variables, it places them in your
executable’s data section. Your program cannot free this memory.

The following program tries to free a variable in this section:
static int data_var = 9;

int main (int argc, char *argv[])
{
 void *addr = (void *) (&data_var);
 /* Error: adress in data section */
 free(addr);
 return 0;
}

Freeing Memory That Is Already Freed

The following program allocates some memory, and then releases it twice.
On some operating systems, your program will raise a SEGV on the second
free request.
int main ()

 Event and Error Notification

24

{
 void *s;
 /* Get some memory */
 s = malloc(sizeof(int)*200);
 /* Now release the memory */
 free(s);
 /* Error: Release it again */
 free(s);
 return 0;
}

Tracking realloc() Problems

The following program passes a misaligned address to the realloc() function.
int main (int argc, char *argv[])
{
 char *s, *bad_s, *realloc_s;
 /* Get some memory */
 s = malloc(sizeof(int)*64);
 /* Reallocate memory using a misaligned address */
 bad_s = s + 8;
 realloc_s = realloc(bad_s, sizeof(int)*256));
 return 0;
}
In a similar fashion, MemoryScape detects realloc() problems caused by
passing addresses to memory sections whose memory your program cannot
free. For example, MemoryScape detects problems if you try to do any of the
following:

• Reallocate stack memory.

• Reallocate memory in the data section.

• Reallocate memory in the bss section.

Freeing the Wrong Address

MemoryScape can detect when a program tries to free a block that does not
correspond to the start of a block allocated using the malloc() function. The
following program illustrates this problem:

int main (int argc, char *argv[])
{
 char *s, *misaligned_s;
 /* Get some memory */
 s = malloc(sizeof(int)*64));
 /* Release memory using a misaligned address */
 misaligned_s = s + 8;
 free(misaligned_s);
 free(s);
 return 0;
}

 Finding Memory Leaks

25

Finding Memory Leaks
MemoryScape can locate your program’s memory leaks and display informa-
tion about them. Here’s what you can do:

1. Run the program and then halt it when you want to look at memory
problems. You should allow your program to run for a while before
stopping execution to give it enough time to create leaks.

2. Select Memory Reports | Leak Detection, Figure 23.

3. Select a report. For example, you might select Source Report.

The top portion shows all of your program’s files. The second column in
this list shows the number of bytes that are leaked from code in those
files. You may want to click on the Bytes header so that MemoryScape
displays which files have the greatest number of leaks.

 Finding Memory Leaks

26

4. After you select a leak in the top part of the window, the bottom of the
window shows a backtrace of the place where your program allocated
the memory. After you select a stack frame in the Backtrace pane,
MemoryScape displays the statement where the block was created.

The backtrace that MemoryScape displays is the backtrace that existed when
your program made the heap allocation request. It is not the current
backtrace.

Figure 23: Leak Detection Source Report

 Finding Memory Leaks

27

Many users like to generate a report that contains all leaks for the entire pro-
gram. If you are running with TotalView, you can set a breakpoint on your
program’s Exit statement. Otherwise, MemoryScape will automatically stop
your program during your program’s exit. After your program stops execut-
ing, generate a Leak Detection Report. You may want to write this report to
disk.

MemoryScape uses a conservative approach to finding memory leaks,
searching roots from the stack, registers, and data sections of the process for
references into the heap. Although leaks will not be falsely reported, some
leaks may be missed. If you are within a method that has leaks, you may need
to step out of the method for the leak to be reported. Leak detection may be
sensitive to the compiler used to build the program.

 Fixing Dangling Pointer Problems

28

Fixing Dangling Pointer
Problems

Fixing dangling pointer problems is usually more difficult than fixing other
memory problems. First of all, you become aware of them only when you
realize that the information your program is manipulating isn’t what it is sup-
posed to be. Even more troubling, these problems can be intermittent,
happening only when your program’s heap manager reuses a memory block.
For example, if nothing else is running on your computer, your program may
never reuse the block. If there are a large number of jobs running, it could
reuse a deallocated block quickly.

After you identify that you have a dangling pointer problem, you have two
problems to solve. The first is to determine where your program freed the
memory block. The second is to determine where it should free this memory.
MemoryScape tools that can help you are:

• Block painting, in which MemoryScape writes a bit pattern into allocated
and deallocated memory blocks.

• Hoarding, in which MemoryScape holds onto a memory block when the
heap manager receives a request to free it. This is most often used to get
beyond where a problem occurs. By allowing the program to continue
executing with correct data, you sometimes have a better chance to find
the problem. For example, if you also paint the block, it becomes easy to

tell what the problem is. In addition, your program might crash. (Crashing
while you are in TotalView is a good thing, because it will show the crash
point, and you will immediately know where the problem is.)

• Watchpoints, in which TotalView stops execution when a new value is
written into a memory block. If MemoryScape is painting deallocated
blocks, you immediately know where your program freed the block.

• Block tagging, in which TotalView stops execution when your program
deallocates or reallocates memory.

Enable painting and hoarding in the Memory Debugging Options Page, Figure
24.

NOTE >>You must be using MemoryScape with TotalView to be able
to find dangling pointers.

 Fixing Dangling Pointer Problems

29

You can turn painting and hoarding on and off. In addition, you can tell Mem-
oryScape what bit patterns to use when it paints memory. For more
information, see “Block Painting” on page 54.

Dangling Pointers
If you enable memory debugging, TotalView displays information in the Vari-
able Window about the variable’s memory status; that is, whether the
memory is allocated or deallocated. The following small program allocates a
memory block, sets a pointer to the middle of the block, and then deallo-
cates the block:
main(int argc, char **argv)
{
 int *addr = 0; /* Pointer to start of block. */
 int *misaddr = 0; /* Pointer to interior of block. */

 addr = (int *) malloc (10 * sizeof(int));

 misaddr = addr + 5; /* Point to block interior */

 /* Deallocate the block. addr and */
 /* misaddr are now dangling. */
 free (addr);
}
Figure 25 shows two Variable Windows. Execution was stopped before your
program executed the free() function. Both windows contain a memory indi-
cator saying that blocks are allocated.

Figure 24: Memory Debugging Options

 Fixing Dangling Pointer Problems

30

After your program executes the free() function, the messages change, Fig-
ure 26.

Figure 25: Allocated Descriptions in a Variable Window Figure 26: Dangling Description in a Variable Window

 Batch Scripting and Using the CLI

31

Batch Scripting and Using the
CLI

Batch Scripting Using tvscript
TotalView and MemoryScape can run unattended if you use the tvscript
shell command. This is called batch debugging because like all batch pro-
grams, you do not need to use them interactively. In addition, you can invoke
tvscript using cron to schedule debugging at off-hours, so reports will be
ready when you want them.

The commands that tvscript executes can be entered in two ways. The first
is to just use command-line options. The second—and recommended—is to
creat a file containing commands that tvscript executes. A file can contain Tcl
callback functions to be called when an event occurs within your program.
These callback functions can also include CLI commands.

Here is an example of how tvscript is invoked using command-line options
on an MPI program:
tvscript -mpi "Open MPI" -tasks 4 \
 -create_actionpoint "hello.c#14=>show_backtrace" \
 ~/Tests/hello-mpi/hello
Some of the events that tvscript can act on are memory events. For exam-
ple, if a double_free event occurs, you can create a Tcl callback function that
tells you more about what the event. This callback function can include CLI
commands.

"Batch Debugging Using tvscript" in the Classic TotalView Reference Guide
explains how to use the tvscript command.

Using the dheap Command

The dheap command tracks memory problems from within the CLI. It sup-
ports the same functionality as the GUI, with some additional options. Here
are actions available through the dheap command:

• To see the status of MemoryScape, use the dheap command with no
arguments, or with the -status argument.

• To enable and disable MemoryScape, use dheap -enable and dheap -
disable.

• To display information about the heap, use dheap -info. You can show
information for the entire heap or limit what TotalView displays to just a
part of it.

• To limit backtrace information to only the information that is important to
you, use the dheap -backtrace command.

• To report errors when data is written outside a memory allocation, use
the dheap -guard command.

• To determine whether there are pointers that point to or within a
deallocated memory block, use the dheap -is_dangling command.

• To be notified of memory allocation or reallocation, use the dheap
-tag_alloc command.

NOTE >>You must be using MemoryScape with TotalView to have access to
the CLI.

NOTE >>For a complete description of the dheap command, see the
dheap command description in the Reference Guide.

 Batch Scripting and Using the CLI

32

• To start and stop error notification, use dheap -notify and dheap -
nonotify.

• To filter the information displayed, use dheap -filter.

• To check for leaks, use dheap -leaks.

• To paint memory with a bit pattern, use dheap -paint.

• To hoard memory, use dheap -hoard.

• To export view information, use dheap -export.

• To detect bounds and use-after-free errors, use dheap -red_zones.

• To compare memory states, either against a baseline or against a saved
state or between two saved states, use dheap -compare.

dheap Example

The following example shows typical CLI information returned after Memory-
Scape locates an error:
d1.<> dheap
 process: Enable Notify Available
 1 (18993): yes yes yes
 1.1 realloc: Address does not match any allocated
block.: 0xbfffd87c

d1.<> dheap -info -backtrace
process 1 (18993):
 0x8049e88 -- 0x8049e98 0x10 [16]
 flags: 0x0 (none)
 : realloc PC=0x400217e5 [/.../malloc_wrappers_dlopen.c]
 : argz_append PC=0x401ae025 [/lib/i686/libc.so.6]
 : __newlocale PC=0x4014b3c7 [/lib/i686/libc.so.6]
 :

...

.../malloc_wrappers_dlopen.c]
 : main PC=0x080487c4 [../realloc_prob.c]
 : __libc_start_main PC=0x40140647 [/lib/i686/libc.so.6]
 : _start PC=0x08048621 [/.../realloc_prob]

 0x8049f18 -- 0x8049f3a 0x22 [34]
 flags: 0x0 (none)
 : realloc PC=0x400217e5 [/.../malloc_wrappers_dlopen.c]
 : main PC=0x0804883e [../realloc_prob.c]
 : __libc_start_main PC=0x40140647 [/lib/i686/libc.so.6]
 : _start PC=0x08048621 [/.../realloc_prob]

The information displayed in this example is explained in more detail in the
following sections.

Notification When free Problems Occur

If you type dheap -enable -notify and then run your program, Memory-
Scape notifies you if a problem occurs when your program tries to free
memory.

When execution stops, you can type dheap (with no arguments), to display
information about what happened. You can also use the dheap -info and
dheap -info -backtrace commands to display additional information. The
information displayed by these commands lets you locate the statement in
your program that caused the problem. For example:
d1.<> dheap
 process: Enable Notify Available
 1 (18993): yes yes yes
 1.1 realloc: Address does not match any allocated block.:
 0xbfffd87c

For each allocated region, the CLI displays the start and end address, and the
length of the region in decimal and hexadecimal formats. For example:
d1.<> dheap
 process: Enable Notify Available

NOTE >>Some dheap options are not available in the GUI.

 Batch Scripting and Using the CLI

33

 1 (30420): yes yes yes
 1.1 free: Address is not the start of any allocated block.:
 free: existing allocated block:
 free: start=0x08049b00 length=(17 [0x11])
 free: flags: 0x0 (none)
 free: malloc PC=0x40021739 [/.../
malloc_wrappers_dlopen.c]
 free: main PC=0x0804871b [../free_prob.c]
 free: __libc_start_main PC=0x40140647 [/lib/i686/
libc.so.6]
 free: _start PC=0x080485e1 [/.../free_prob]

 free: address passed to heap manager: 0x08049b08

MemoryScape can also tell you when your program deallocates or reallo-
cates tagged blocks. For more information, see “Deallocation Notification:
dheap -tag_alloc” on page 42.

Showing Backtrace Information: dheap -backtrace:

The backtrace associated with a memory allocation can contain many stack
frames that are part of the heap library, MemoryScape’s library, and other
related functions and libraries. You are not usually interested in this informa-
tion, since these stack frames aren’t part of your program. Using the -
backtrace option lets you manage this information, as follows:

• dheap -backtrace -set_trim value

Removes—that is, trims—this number of stack frames from the top of
the backtrace. This lets you hide the stack frames that you’re not inter-
ested in as they come from libraries.

• dheap -backtrace -set_depth value

Limits the number of stack frames to the value that you type as an argu-
ment. The depth value starts after the trim value. That is, the number of
excluded frames does not include the frames that were trimmed.

Guarding Memory Blocks: dheap -guards

When your program allocates a memory block, MemoryScape can surround
this block with additional memory. It will also initialize this memory to a bit
pattern. When MemoryScape checks these blocks, it can tell if your program
overwrote the blocks.

Checks can be made in the following ways:

• Use the dheap -guard -check command while the process is stopped.
MemoryScape will respond by writing information about all overwritten
guard blocks.

• Use the dheap -notify command. If you’ve turned on notification,
MemoryScape checks guard blocks when your program deallocates a
memory block. If that memory block’s guards were altered, the CLI stops
program execution and MemoryScape writes information.

Use the dheap -guard -set command to turn this feature on or off. To see
guard block status, use the dheap -guard command without an argument.
For example:
d1.<> dheap -guard
 Size Pattern
 process: Enabled Max Pre Post Pre Post
 1 (13071): yes 0 8 8 0x77777777 0x99999999

If you are using the dheap -info command, you can include guard block
information in the output by typing dheap -info -show_guard_settings.

NOTE >>You should set the TotalView VERBOSE setting to WARNING.
Setting it lower than this suppresses this output. Setting it
higher tends to bury the information in debugger runtime
information.

 Batch Scripting and Using the CLI

34

Memory Reuse: dheap -hoard

In some cases, you may not want your system’s heap manager to immedi-
ately reuse memory. You would do this, for example, when you are trying to
find problems that occur when more than one process or thread is allocating
the same memory block. Hoarding allows you to temporarily delay the block’s
release to the heap manager. When the hoard has reached its capacity in
either size or number of blocks, MemoryScape releases previously hoarded
blocks back to your program’s heap manager.

The order in which MemoryScape releases blocks is the order in which it
hoards them. That is, the first blocks hoarded are the first blocks released—
this is a first-in, first-out (FIFO) queue.

Hoarding is a two-step process, as follows:

1. Use the dheap -enable command to tell MemoryScape to track heap
allocations.

2. Use the dheap -hoard -set on command to tell MemoryScape not to
release deallocated blocks back to the heap manager. (The dheap
-hoard -set off command tells MemoryScape to no longer hoard mem-
ory.) After you turn hoarding on, use the dheap -hoard
-set_all_deallocs on command to tell MemoryScape to start hoarding
blocks.

At any time, you can obtain the hoard’s status by typing the dheap -hoard
command. For example:
d1.<> dheap -hoard
 All Max Max
 process: Enabled deallocs size blocks Size Blocks
1 (10883): yes yes 16 (kb) 32 15 (kb) 9

The Enabled column contains either yes or no, which indicates whether
hoarding is enabled. The All deallocs column indicates if hoarding is occur-
ing. The next columns show the maximum size in kilobytes and number of
blocks to which the hoard can grow. The last two columns show the current
size of the hoard, again, in kilobytes and the number of blocks.

As your program executes, MemoryScape adds the deallocated region to a
FIFO buffer. Depending on your program’s use of the heap, the hoard could
become quite large. You can control the hoard’s size by setting the maximum
amount of memory in kilobytes that MemoryScape can hoard and the maxi-
mum number of hoarded blocks.

dheap -hoard -set_max_kb num_kb
Sets the maximum size in kilobytes to which the hoard is allowed to grow.
The default value on many operating systems is 32KB.

dheap -hoard -set_max_blocks num_blocks
Sets the maximum number of blocks that the hoard can contain.

You can tell which blocks are in the hoard by typing the dheap -hoard
-display command. For example:
d1.<> dheap -hoard -display
process 1 (10883):
 0x804cdb0 -- 0x804d3b0 0x600 [1536]
 flags: 0x32 (hoarded)
 0x804d3b8 -- 0x804dab8 0x700 [1792]
 flags: 0x32 (hoarded)
 0x804dac0 -- 0x804e2c0 0x800 [2048]
 flags: 0x32 (hoarded)
 0x804fce8 -- 0x804fee8 0x200 [512]
 flags: 0x32 (hoarded)
 0x804fef0 -- 0x80502f0 0x400 [1024]
 flags: 0x32 (hoarded)

You can enable autoshrinking when hoarding by entering dheap -hoard
-autoshrink -set on. This allows the hoard to contract automatically when
memory is short. When an allocation request fails because of a shortage of

 Batch Scripting and Using the CLI

35

memory and autoshrinking is enabled, the HIA will eject a block from the
hoard and automatically retry the request. This will continue until either the
allocation succeeds, or the hoard is completely exhausted. In the latter case,
the normal 'allocation operation returned null' event is raised.

One other feature is associated with autoshrinking: a notification threshold
size, given in kb. If, during the course of autoshrinking, the size of the hoard
in kb crosses from above to below the threshold size defined by
-autoshrink -set_threshold_kb num_kb, a new event is raised. This is to
alert the user that space is running out. The event will be particularly useful
when the size of the hoard is unlimited (which means that blocks released by
the application are not returned to the heap manager), and therefore the
size of the hoard really does reflect how much space is left.

One concern regarding the threshold event is that it could be reported many
times if the size of the hoard fluctuates, crossing and recrossing the thresh-
old. To reduce the noise, a count is associated with the threshold. The count
is decremented each time the event is raised. This continues until the count
reaches zero, after which the count is no longer decremented, and the event
is not raised. Notification can be reactivated by re-priming the counter using
the -set_threshold_trigger option. The default value for the number of
times the event is triggered is 1. The trigger is independent of any event fil-
tering that may be active.

The -autoshrink -reset, -autoshrink -reset_threshold_kb, and
-autoshrink -reset_threshold_trigger options unset the TotalView settings
for these controls. The HIA will determine its settings using the values in
either the TVHEAP_ARGS environment variable, the HIA configuration file, or
its default values.

Writing Heap Information: dheap -export

You may want to write the information that MemoryScape collects about
your program to disk so that you can examine it at a later time. Or, you may
want to save information from different sessions so that you can compare
changes that you’ve made.

You can save MemoryScape information by using the dheap -export com-
mand. This command has two sets of options: one contain options you must
specify, the other contains options that are optional. In all cases, you must
use the:

• -output option to name the file to which MemoryScape writes
information.

• -data option to name which data MemoryScape includes.

For example:

dheap -export -output heap.txt -data leaks

You can also add -set_show_code and -set_show_backtraces. These
options are most often used to restrict the amount of information that Mem-
oryScape displays. You can also use the -check_interior option to tell
MemoryScape that if a pointer is pointing into a block instead of at the
block’s beginning, then the block shouldn’t be considered as being leaked.

Filtering Heap Information: dheap -filter

Depending upon the way in which your program manages memory,
MemoryScape might be managing a lot of information. You can filter this
information down to focus on things that are important to you at the

 Batch Scripting and Using the CLI

36

moment by using filters. These filters can only be created using the GUI.
However, after you create a filter using the GUI, you can apply it from within
the CLI by using the dheap -filter commands.

Here is an excerpt from a CLI interaction:
d1.<> dheap -filter -list
Filtering of heap reports is 'disabled'
Individual filters are set as follows:
 Disabled MyFilter Function contains strdup

d1.<> dheap -filter -enable MyFilter
d1.<> dheap -filter -enable
d1.<> dheap -filter -list
Filtering of heap reports is 'enabled'
Individual filters are set as follows:
 Enabled MyFilter Function contains strdup

d1.<>

Notice that TotalView automatically knew about your filters. That is, it always
reads your filter file. However, TotalView ignores the file until you both enable
the file and enable filtering. That is, while the following two commands look
about the same, they are different:

dheap -filter -enable MyFilter
dheap -filter -enable

The first command tells MemoryScape that it could use the information con-
tained within the MyFilter filter. However, MemoryScape only uses it after
you enter the second command.

Checking for Dangling Pointers: dheap -is_dangling:

The dheap -is_dangling command lets you determine if a pointer is still
pointing into a deallocated memory block.

You can also use the dheap -is_dangling command to determine if an
address refers to a block that was once allocated but has not yet been recy-
cled. That is, this command lets you know if a pointer is pointing into
deallocated memory.

Here’s a small program that illustrates a dangling pointer:
main(int argc, char **argv)
{
 int *addr = 0; /* Pointer to start of block. */
 int *misaddr = 0; /* Pointer to interior of block. */

 addr = (int *) malloc (10 * sizeof(int));
 /* Point to interior of the block. */
 misaddr = addr + 5;

 /* addr and misaddr now dangling. */
 free (addr);
 printf ("addr=%lx, misaddr=%lx\n",
 (long) addr, (long) misaddr);
}

If you set a breakpoint on the printf() statement and probe the addresses of
addr and misaddr, the CLI displays the following:
d1.<> dheap -is_dangling 0x80496d0
 process: 0x80496d0
 1 (19405): dangling

d1.<> dheap -is_dangling 0x80496e4
 process: 0x80496e4
 1 (19405): dangling interior

This example is contrived. When creating this example, the variables were
examined for their address and their addresses were used as arguments. In
a realistic program, you’d find the memory block referenced by a pointer and
then use that value. In this case, because it is so simple, using the CLI dprint
command gives you the information you need. For example:
d1.<> dprint addr
 addr = 0x080496d0 (Dangling) -> 0x00000000 (0)

 Batch Scripting and Using the CLI

37

d1.<> dprint misaddr
 misaddr = 0x080496e4 (Dangling Interior) -> 0x00000000 (0)

If a pointer is pointing into memory that is deallocated, and this memory is
being hoarded, the CLI also lets you know that you are looking at hoarded
memory.

Detecting Leaks: dheap -leaks

The dheap -leaks command locates memory blocks that your program allo-
cated and are no longer refe enced. It then displays a report that describes
these blocks; for example:
d1.<> dheap -leaks
process 1 (32188): total count 9, total bytes 450
 * leak 1 -- total count 9 (100.00%), total bytes 450 (100%)
 -- smallest / largest / average leak: 10 / 90 / 50
 : malloc PC=0x40021739 [/.../malloc_wrappers_dlopn.c]
 : main PC=0x0804851e [/.../local_leak.cxx]
 : __libc_start_main PC=0x40055647 [/lib/i686/libc.so.6]
 : _start PC=0x080483f1 [/.../local_leak]

If you use the -check_interior option, MemoryScape considers a block as
being referenced if a pointer exists to memory inside the block.

In addition to providing backtrace information, the CLI:

• Consolidates leaks made by one program statement into one leak report.
For example, leak 1 has nine instances.

• Reports the amount of memory consumed for a group of leaks. It also
tells you what percentage of leaked memory this one group of memory is
using.

• Indicates the smallest and largest leak size, as well as telling you what the
average leak size is for a group.

You might want to paint a memory block when it is deallocated so that you
can recognize that the data pointed to is out-of-date. Tagging the block so
that you can be notified when it is deallocated is another way to locate the
source of problems.

Block Painting: dheap -paint

When your program allocates or deallocates a block, MemoryScape can paint
the block with a bit pattern. This makes it easy to identify uninitialized blocks,
or blocks pointed to by dangling pointers.

Here are the commands that enable block painting:

• dheap -paint -set_alloc on

• dheap -paint -set_dealloc on

• dheap -paint -set_zalloc on

Use the dheap -paint command to check the kind of painting that occurs
and what the current painting pattern is. For example:
d1.<> dheap -paint
 Alloc Dealloc
 process: Alloc Dealloc AllocZero pattern pattern
1 (1012): yes yes no 0xa110ca7f 0xdea110cf

Some heap allocation routines such as calloc() return memory initialized to
zero. Using the -set_zalloc_on command allows you to separately enable the
painting of the memory blocks altered by these kinds of routines. If you do
enable painting for routines that set memory to zero, MemoryScape uses the
same pattern that it uses for a normal allocation.

Here’s an example of painted memory:
d1.<> dprint *(red_balls)
 *(red_balls) = {
 value = 0xa110ca7f (-1592735105)

 Batch Scripting and Using the CLI

38

 x = -2.05181867705792e-149
 y = -2.05181867705792e-149
 spare = 0xa110ca7f (-1592735105)
 colour = 0xa110ca7f -> <Bad address: 0xa110ca7f>
 }

The 0xall0ca7f allocation pattern resembles the word “allocate”. Similarly,
the 0xdea110cf deallocation pattern resembles “deallocate”.

Notice that all of the values in the red_balls structure in this example aren’t
set to 0xall0ca7f. This is because the amount of memory used by elements
of the variable use more bits than the 0xall0ca7f bit pattern. The following
two CLI statements show the result of printing the x variable, and then cast-
ing it into an array of two integers:
d1.<> dprint (red_balls)->x
 (red_balls)->x = -2.05181867705792e-149
d1.<> dprint {*(int[2]*)&(red_balls)->x}
 (int[2])&(red_balls)->x = {
 [0] = 0xa110ca7f (-1592735105)
 [1] = 0xa110ca7f (-1592735105)

(Diving in the GUI is much easier.)

You can tell MemoryScape to use a different pattern by using the following
two commands:

• dheap -paint -set_alloc_pattern pattern

• dheap -paint -set_dealloc_pattern pattern

Red Zones Bounds Checking: dheap -red_zones

The Red Zones feature helps catch bounds errors and use-after-free errors.
The basic idea is that each allocation is placed in its own page. An allocation
is positioned so that if an overrun, that is, an access beyond the end of the
allocation, is to be detected, the end of the allocation corresponds to the end
of the page.

The page following that in which the allocation lies is also allocated, though
access to this page is disabled. This page is termed the fence. Should the
application attempt to access a location beyond the end of the allocation,
that is, in the fence, the operating system sends the target a segment viola-
tion signal. This is caught by a signal handler installed by the HIA. The HIA
examines the address that caused the violation. If it it lies in the fence, then
the HIA raises an overrun bounds error using the normal event mechanism.

If, however, the address does not lie in any region that the HIA "owns," the
HIA attempts to replicate what would have happened if the HIA’s signal han-
dler were not in place. If the application had installed a signal handler, then
this handler is called. Otherwise, the HIA attempts to perform the default
action for the signal. It should be clear from this that the HIA needs to inter-
pose the signal’s API to ensure that it always remains the installed handler as
far as the operating system is concerned. At the same time, it needs to pres-
ent the application with what it expects.

Underruns, or errors where the application attempts to read before the start
of an allocation, are handled in a similar way. Here, though, the allocation is
positioned so that its start lies at the start of the page, and the fence is posi-
tioned to precede the allocation.

 Batch Scripting and Using the CLI

39

One complication that arises concerns overrun detection. The architecture
or definition of the allocation routines may require that certain addresses
conform to alignment constraints. As a consequence, there may be a conflict
between ensuring that the allocation’s start address has the correct align-
ment, and ensuring that the allocation ends at the end of the page.

Use-after-free errors can also be detected. In this case, when the block is
deallocated, the pages are not returned to the operating system. Instead,
the HIA changes the state of the allocation’s table entry to indicate that it is in
the deallocated state, and then disables access to the page in which the allo-
cation lies. This time, should the application attempt to access the block
after it has been deallocated, a signal will be raised. Again, the HIA examines
the faulting address to see what it knows about the address, and then either
raises an appropriate event for TotalView, or forwards the signal on.

A key feature distinguishing TotalView Red Zones is that they can be engaged
and disengaged at will during the course of the target's execution. The set-
tings can be adjusted so that new allocations have different properties from
existing allocations. Since Red Zones can be turned on or off, some of the
application's requests can be satisfied by the Red Zones allocator, and others
by the standard heap manager. The HIA keeps track of which allocator is
responsible for, or owns, each block.

The dheap -red_zones [-status [-all]] option displays the current HIA Red
Zone settings. By default, dheap -red_zones displays only those settings
that can vary in the current mode, so that, for example, in overrun mode, the
settings for fences and end positioning are not shown. The dheap
-red_zones -status -all command will cause all settings to be shown, includ-
ing those that are overridden for the current mode.

Please note that the abbreviation -rz can be used in the CLI for -red_zones.

The dheap -red_zones -stats [<start_addr [<end addr]] option shows sta-
tistics relating to the HIA’s Red Zones allocator for the optionally specified
address range. If no range is specified the statistics are shown for the entire
address space. These are:

• number of allocated blocks

• sum of the space requests received by the Red Zones allocator for
allocated blocks

• sum of the space used for fences for allocated blocks

• overall space used for allocated blocks

The same set of statistics are also shown for deallocated blocks. In addition,
the space used for each category is also shown as a percentage of the overall
space used for Red Zones.

dheap -red_zones -info [<start_addr [<end addr]] shows the Red Zones
entries for allocations (and deallocations) lying in the optionally specified
range. If no range is specified the entries are shown for the entire address
space.

Red Zones is enabled using dheap -red_zones -set on, and disabled with
dheap -red_zones -set off. dheap -red_zones -reset allows the HIA to
determine its setting using the usual rules.

dheap -red_zones -set_mode sets the HIA in one of several Red Zone
modes. When a new allocation is requested, the HIA will override the actual
settings for some of the individual controls, and instead use values that cor-
respond to that mode. The settings that are affected are: pre-fence,
post-fence, and end-positioning. The other settings, like use-after-free,
exit value, and alignment, take their values from the actual settings of
those controls.

 Batch Scripting and Using the CLI

40

The Red Zone modes are:

• dheap -red_zones -set_mode overrun
The settings used are those that allow overruns to be detected. These
are: no for pre-fence, yes for post-fence, and yes for end positioned.

• dheap -red_zones -set_mode underrun
The settings used are those that allow underruns to be detected. These
are: yes for pre-fence, no for post-fence, and no for end positioned.

• dheap -red_zones -set_mode unfenced
The settings used are those that allow use_after_frees to be detected.
These are: no for pre-fence, no for post-fence. End positioned is
determined from the control's setting.

• dheap -red_zones -set_mode manual
All settings are determined from their actual values.

Use the dheap -red_zones -set_pre_fence (on | off) | -reset_pre_fence
commands to adjust the pre-fence control. However, the setting is ignored
unless the mode is manual.

Use the the dheap -red_zones -set_post_fence (on | off) | -reset_post_fence

commands to adjust the post-fence control. However, the setting is ignored
unless the mode is manual.

To enable the use-after-free control, enter dheap -red_zones -set_use_af-
ter_free on. To disable the control enter “off”. If enabled, any subsequent
allocations will be tagged such that the allocation and its fences are retained
when the block is deallocated. Access to the block is disabled when it is deal-
located to allow attempts to access the block to be detected.

The alignment control dheap -red_zones -set_alignment <integer> regu-
lates the alignment of the start address of a block issued by the Red Zones
allocator. An alignment of zero indicates that the default alignment for the

platform should be used. An alignment of two ensures that any address
returned by the Red Zones allocator is a multiple of two. In this case, if the
length of the block is odd, then the end of the block will not line up with the
end of the page containing the allocation. An alignment of one would be
necessary for the end of the block to always correspond to the end of the
page.

Adjusting the fence size is done through the dheap -red_zones -set_fence-
_size <integer> command. A fence size of zero indicates that the default
fence size of one page should be used. If necessary, the fence size is
rounded up to the next multiple of the page size. In most cases it should not
be necessary to adjust this control. One instance where it may be useful,
however, is where it is suspected that a bounds error is a consequence of a
badly coded loop, and the stride of the loop is large. In such a case, a larger
fence may be helpful.

dheap -red_zones -set_end_aligned (on | off) controls whether the alloca-
tion is positioned at the end of the containing page or at its start. The control
in the HIA is always updated, though the actual value is ignored in overrun
and underrun modes.

Use dheap -red_zones -set_exit_value <integer> to adjust the exit value
used if the HIA terminates the target following detection of a Red Zone error.
Generally, the application would fail if it is allowed to continue after a Red
Zone error has been detected. In order to allow some control over the appli-
cation’s exit code, the HIA will call exit when an error is detected. The value it
passes to exit as a termination code can be controlled, so that if the applica-
tion is run from scripts the cause for the termination can be determined.

 Batch Scripting and Using the CLI

41

The dheap -red_zones -size_ranges ... option for Red Zones allows the user
to restrict the use of Red Zones to allocations of specified sizes. If Red Zones
are engaged and size ranges are enabled, the Red Zones allocator will be
used if the size of the request lies in one of the defined size ranges. A value
is deemed to lie in a range if start <= size <= end.

To make typing a bit easier, -size_ranges can be abbreviated to -sr.

A range having an end of 0 is interpreted as having no upper limit. Thus if
the end is 0, the size matches the range if it is at least as large as the start.

The HIA supports a number of size ranges. This allows particular ranges of
sizes to be included or excluded. The Red Zones allocator is used if the size
of the request lies in any one of these ranges. The HIA does not check to see
that ranges don't overlap or are otherwise consistent.

The determination of whether the Red Zones allocator should be used is
made at the time of the original allocation. Thus, once an allocator has taken
ownership of a block, that allocator is used for the remainder of the block's
life. In particular, all realloc operations are handled by the same allocator,
irrespective of the size range settings at the time of reallocation.

There are two attributes associated with each range. The first is the “in_use”
attribute. This is ignored by the HIA, and is provided for the benefit of
TotalView. The motivation here is to allow TotalView to keep the state that
would otherwise be lost if the target is detached, and then reattached to
later.

The second attribute is the “active” attribute. This indicates if the size range
is active, and therefore whether it is used by the HIA when determining
whether the Red Zones allocator should be used.

The TotalView cli command dheap -red_zones -size_ranges -set on enables
size ranges, and dheap -red_zones -size_ranges -set off disables size
ranges. If size ranges are disabled, but Red Zones are enabled, the Red
Zones allocator will be used for all allocations.

dheap -red_zones -size_ranges -reset unsets the TotalView setting for the
enable/disable control.

The dheap -red_zones -size_ranges -status [-all] <id_range> command
shows the current settings of the size ranges. The absence of an <id_range>
is equivalent to an ID range of “0:0”. By default, only “in_use” size ranges are
displayed. To display all known ranges, specify -all. <id_range> must be in
one of the following formats:

x:y = id's from x to y

:y = id's from 1 to y

x: = id of x and higher

x = id is x

To set a size range identified by <id> to a particular size range the dheap
-red_zones -size_ranges -set_range <id> <size_range> command is used.
<size_range> must be in one of the following formats:

x:y = allocations from x to y

:y = allocations from 1 to y

x: = allocations of x and higher

x = allocations of x

To reset an id or range of ids use dheap -red_zones -size_ranges -
reset_range <id_range>. <id_range> must be in a format defined above.

 Batch Scripting and Using the CLI

42

The dheap -red_zones -size_ranges -set_in_use (on | off) <id_range>
option adjusts the “in_use” attribute of all the size ranges whose ids lie within
<id_range>. dheap -red_zones -size_ranges -set_active (on | off)
<id_range> adjusts the “active” attribute of all the size ranges whose ids lie
within <id_range>.

The following Red Zones command options unset the TotalView settings for
these controls:

dheap -red_zones -reset_mode

dheap -red_zones -reset_pre_fence

dheap -red_zones -reset_post_fence

dheap -red_zones -reset_use_after_free

dheap -red_zones -reset_alignment

dheap -red_zones -reset_fence_size

dheap -red_zones -reset_exit_value

dheap -red_zones -reset_end_aligned

When the above commands are entered, the HIA will determine its settings
using the values in the TVHEAP_ARGS environment variable, the HIA configu-
ration file, or its default values.

Deallocation Notification: dheap -tag_alloc

You can tell MemoryScape to tag information within MemoryScape’s tables
and to notify you when your program either frees a block or passes it to
realloc() by using the following two commands:

• dheap -tag_alloc -notify_dealloc

• dheap -tag_alloc -notify_realloc

Tagging is done within MemoryScape’s agent. It tells MemoryScape to watch
those memory blocks. Arguments to these commands tell MemoryScape
which blocks to tag. If you do not type address arguments, TotalView notifies
you when your program frees or reallocates an allocated block. The following
example shows how to tag a block and how to see that a block is tagged:
d1.<> dheap -tag_alloc -notify_dealloc 0x8049a48
process 1 (19387): 1 record(s) update
d1.<> dheap -info
process 1 (19387):
 0x8049a48 -- 0x8049b48 0x100 [256]
 flags: 0x2 (notify_dealloc)
 0x8049b50 -- 0x8049d50 0x200 [512]
 flags: 0x0 (none)
 0x8049d58 -- 0x804a058 0x300 [768]
 flags: 0x0 (none)

Using the -notify_dealloc subcommand tells MemoryScape to let you know
when a memory block is freed or when realloc() is called with its length set to
zero. If you want notification when other values are passed to the realloc()
function, use the -notify_realloc subcommand.

After execution stops, here is what the CLI displays when you type another
dheap -info command:
d1.<> dheap -info
process 1 (19387):
 0x8049a48 -- 0x8049b48 0x100 [256]
 flags: 0x3 (notify_dealloc, op_in_progress)
 0x8049b50 -- 0x8049d50 0x200 [512]
 flags: 0x0 (none)
 0x8049d58 -- 0x804a058 0x300 [768]

TVHEAP_ARGS
Environment variable for presetting MemoryScape values

 Batch Scripting and Using the CLI

43

When you start TotalView, it looks for the TVHEAP_ARGS environment vari-
able. If it exists, TotalView reads values placed in it. If one of these values
changes a MemoryScape default value, MemoryScape uses this value as the
default.

If you select a <Default> button in the GUI or a reset option in the CLI, Mem-
oryScape resets the value to the one you set here, rather than to its default.

TVHEAP_ARGS Values

The values that you can enter into this variable are as follows:

display_a llocations_on_exit=boolean
Tells MemoryScape to dump the allocation table when your program ex-
its. If your program ends because it received a signal, MemoryScape
might not be able to dump this table.

backtrace_depth=depth
Sets the backtrace depth value. See “Showing Backtrace Information:
dheap -backtrace:” on page 33 for more information.

backtrace_trim=trim
Sets the backtrace trim value. See “Showing Backtrace Information:
dheap -backtrace:” on page 33 for more information.

enable_event_filtering=boolean
notify_free_not_allocated=boolean
notify_realloc_not_allocated=boolean
notify_addr_not_at_start=boolean
notify_double_alloc=boolean
notify_guard_corruption=boolean
notify_alloc_not_in_heap=boolean
notify_alloc_null=boolean
notify_alloc_returned_bad_alignment=boolean
notify_bad_alignment_argument=boolean
notify_dealloc=boolean

notify_realloc=boolean
notify_double_dealloc=boolean

Same meanings as dheap -event_filter.

enable_guard_blocks=boolean
guard_max_size=positive-integer
guard_pre_size=positive-integer
guard_post_size=positive-integer
guard_pre_pattern=integer
guard_post_pattern=integer

Same meanings as dheap -guard.

enable_hoarding=boolean
hoard_all_blocks=boolean
hoard_maximum_num_blocks=positive-integer
hoard_maximum_kb=positive-integer

Same meanings as dheap -hoard.

enable_hoard_autoshrink=boolean
hoard_autoshrink_threshold_kb=positive-integer
hoard_autoshrink_trigger_count=positive-integer

enable_red_zones=boolean

enable_rz_size_ranges=boolean
rz_alignment=positive-integer
rz_detect_underrun=boolean
rz_detect_overrun=boolean
rz_detect_use_after_free=boolean
rz_end_alligned=boolean
rz_exit_val=integer
rz_fence_size=positive-integer
rz_mode=overrun | underrun |unfenced | manual
rz_size_range=positive-integer,positive-integer,positive-integer
rz_size_range_enable=positive-integer,boolean

Same meanings as with dheap -red_zones.

 Batch Scripting and Using the CLI

44

memalign_strict_alignment_even_multiple
MemoryScape provides an integral multiple of the alignment rather than
the even multiple described in the Sun memalign documentation. By in-
cluding this value, you are telling MemoryScape to use the Sun alignment
definition. However, your results might be inconsistent if you do this.

output_fd=int
output_file=pathname

Sends output from MemoryScape to the file descriptor or file that you
name.

paint_on_alloc=boolean
paint_on_dealloc=boolean
paint_on_zalloc=boolean
paint_alloc_pattern=integer
paint_dealloc_pattern=integer

Same meanings as with dheap -paint

verbosity=int
Sets MemoryScape’s verbosity level. If the level is greater than 0, Memory-
Scape sends information to stderr. The values you can set are:

0: Display no information. This is the default.

1: Print error messages.

2: Print all relevant information.

This option is most often used when debugging MemoryScape problems.
Setting the TotalView VERBOSE CLI variable does about the same thing.

Example

For more than one value, separate entries with spaces and place the entire
entry within quote. For example:
setenv TVHEAP_ARGS=”output_file=my_file backtrace_depth=16”

 Examining Memory

45

Examining Memory
So far, you’ve been reading about memory errors. If only things were this
simple. The large amount of memory available on a modern computer and
the ways in which an operating system converts actual memory into virtual
memory may hide many problems. At some point, your program can hit a
wall—thrashing the heap to find memory it can use or crashing because,
while memory is available, the operating system can’t find a block big enough
to contain your data. In these circumstances, and many others, you should
examine the heap to determine how your program is managing memory.

Begin analyzing data by displaying the Memory Reports | Heap Status |
Graphical Report. After generating the report, MemoryScape displays a
visual report of the heap, Figure 27.

NOTE >>MemoryScape can display a lot of information, at times too
much. You can simplify MemoryScape reports using a filter
that suppresses the display of information. For more infor-
mation on filters, see Task 10: “Filtering Reports” on
page 103.

 Examining Memory

46

If you place the mouse cursor over a block, MemoryScape displays informa-
tion about this block in a tooltip.

The display area has three parts. The small upper area contains controls that
specify which content MemoryScape displays. The middle contains many
bars, each of which represents one allocation. The bar’s color indicates if the
memory block is allocated, deallocated, leaked, or in the hoard.

The bottom area has three divisions.

• The Overall Totals area summarizes the kinds of information displayed
within the top area as well as providing a key to the colors used when
drawing the blocks.

• If you select a block in the top area, the Selected Block area (obscured
by the information pop-up) contains information about this block. When
you select a block, MemoryScape highlights it within the top area.

Figure 27: Heap Status Graphical Report

 Examining Memory

47

• The Related Blocks area on the right displays how many other blocks
your program allocated from the same location. (Actually, this just shows
how many allocations had the same backtrace. If your program got to the
same place in different ways, each different way would have a different
backtrace, so MemoryScape doesn’t consider them related.)

Now that you have this information, you can begin making decisions. Obvi-
ously, you should fix the leaks. If there were a lot of small blocks, is your
program allocating memory too frequently? Should it be allocating memory
in larger blocks and managing the allocated memory directly? Is there a pat-
tern of allocations and deallocations that prevents reuse?

Block Properties
In many places within MemoryScape, you can right click on a displayed block
and select Properties, which launches the Memory Block Properties dialog,
Figure 28.

NOTE >>Memory managers tend to be lazy. Unless they can easily
reuse memory, they just get more. If you use the Memory
Usage Page to monitor how your program is using memory,
you’ll probably find that your program only gets bigger.
Once your program grabs memory from the operating sys-
tem, it doesn’t usually give it back. And, while it could reuse
this memory if your program deallocates the block, it is eas-
ier and quicker just to grab new memory.

 Examining Memory

48

MEMORY BLOCKS: Contains a list of all memory blocks for which you have
requested property information. Notice the + symbol. When selected,
MemoryScape displays more information about the block. Click on
parts of the third picture in this help topic for information.

POINT OF ALLOCATION: When selected, MemoryScape displays informa-
tion it has collected about the memory block at the time when it was
allocated. Click over other areas in this picture for information.

POINT OF DEALLOCATION: When selected, MemoryScape displays infor-
mation it has collected about the memory block at the time when it
was deallocated. If this tab is empty, the block has not yet been deallo-
cated. The nformation displayed in this area is the same as the Point
of Allocation tab.

MEMORY CONTENTS: When selected, MemoryScape displays information
about the bytes contained within the block. Click on parts of the sec-
ond picture in this help topic for information.

Figure 28: Memory Block Properties

 Examining Memory

49

BACKTRACE: Contains the backtrace associated with the block. (A backtrace
is the call stack that existed when your program allocated the memory
block.) Clicking on a function in this area changes the display in the
Source area.

SOURCE: The Source area shows the line in your program associated with
the selected function and the file containing this line of code.

CLOSE: Closes this window

HIDE BACKTRACE/CONTENT: Hides the bottom part of this window so
that only the Memory Blocks area is visible.

HELP: Tells MemoryScape to display Help text.

Memory Contents Tab

When you click the Memory Contents tab, MemoryScape displays the con-
tents of this memory block, Figure 29, in a manner similar to that used in the
shell od command.

MEMORY BLOCKS: Contains a list of all memory blocks for which you have
requested property information. Notice the + symbol. When selected,

MemoryScape displays more information about the block. Click on
parts of the third picture in this help topic for information.

Figure 29: Memory Block Properties, Memory Contents tab

 Examining Memory

50

DISPLAY FORMAT: Tells MemoryScape to display information in one of the
following ways: Hexadecimal, Decimal, Unsigned Decimal, Octal,
Character, Float, Binary, or Address. How many characters and the
size of the blocks are set using the Count and Bytes controls.

COUNT: Controls how many memory blocks MemoryScape will display.

BYTES: Specifies the number of bytes to display in each block.

CONTENTS AREA: The left column names the first memory address being
displayed in the remaining columns in the row. The colors used to dis-
play blocks indicates their status, as follows:

CHARACTER DISPLAY AREA: If the contents of a memory address can be
interpreted as a character, it is displayed in this area.

CLOSE: Closes this window

HIDE BACKTRACE/CONTENT: Hides the bottom part of this window so
that only the Memory Blocks area is visible.

HELP: Tells MemoryScape to display Help text.

Additional Memory Block Information

If you expand the top area of the Block Properties window manually or if you
click the Hide Backtrace/Content button, you can see additional information
about the memory block, Figure 30.

BLOCK: Lists the starting and ending address of each block, its status—
means allocated. As this window contains an entry for each block for
which you’ve requested properties, more than one block can be dis-
played, as is shown here.

COMMENT AREA: As an aid to remember which block is which in this win-
dow, add a comment to the block.

Figure 30: Memory Block Properties, Hide Backtrace/Content

 Filtering

51

GRAPHIC DISPLAY: Shows a display of the blocks similar to how it is
shown in the Heap Status Graphics display and other places where
memory is displayed graphically. In this example, guard blocks were
used, and they are indicated by the lighter green area at the ends of
the block

BLOCK INFORMATION: Contains status information about the block.

BLOCK FLAGS: Selecting a checkbox tells MemoryScape that it should stop
execution and notify you when the block is deallocated or reallocated.

CLOSE: Closes this window.

SHOW BACKTRACE/CONTENT: Shows the Backtrace/Content part of this
window that was previously concealed.

HELP: Displays Help text.

Filtering
You can remove information from Backtrace and Source reports by adding a
filter. For example, suppose you do not want MemoryScape to show blocks
related to a standard function such as strdup(). By creating and applying a
filter, MemoryScape removes this function’s information from reports. The
exception is the Heap Status Graphical Report. In this report, filtered
blocks are displayed using a lighter version of their ordinary color.

Filtering simplifies the display so you can more easily focus on problems. For
example, filtering allows you to remove leaks originating in libraries for which
you have no control.

Filtering by a function name is just one option. For more information, see
Task 10: “Filtering Reports” on page 103.

Using Guard Blocks
When a program allocates a memory block, it is responsible for not writing
data outside the block. For example, if you allocate 16 bytes, you do not want
to write 32 bytes of information into it because this data would corrupt the
information contained in the next block.

MemoryScape can help you detect problems related to writing data either
before or after a block by surrounding blocks with a small amount of addi-
tional memory. It will also write a pattern into this memory. These additional
memory blocks are called guard blocks. If your program writes data into these
blocks, MemoryScape can tell that a problem occurred, as follows:

• When you are displaying a Heap Status report, you can ask for a
Corrupted Guard Blocks report. The Heap Status report also shows the
guard regions and corrupted blocks.

• When your program deallocates memory, MemoryScape can check the
deallocated block’s guards. If they’ve been altered—that is, if your
program has written data into them—MemoryScape can stop execution
and alert you to the problem.

For example, suppose your program allocates 16 bytes and you write 64
bytes of data. While the first 16 bytes are correctly written, the remaining 48
aren’t. This write request will also overwrite the guard blocks for the current

 Using Guard Blocks

52

block and the block that follows, as well as some of the next block’s data. That
is, you will have inadvertently changed some data—data that when accessed
will be incorrect.

Asking for notification when the block is deallocated lets you know that a
problem has occurred. Because you now know which block was corrupted,
you can begin to locate the cause of the problem. In many cases, you will
rerun your program, focusing on those blocks.

 Using Red Zones

53

Using Red Zones

As discussed in “Using Guard Blocks” on page 51, when a program allocates
a memory block, it is responsible to not write or read data outside the block.
Red Zones give you another tool, like guard blocks, for detecting access
violations.

MemoryScape can immediately detect when your program oversteps the
bounds of your allocated memory by protecting it with a Red Zone, a page of
memory placed either before or after your allocated block. If your program
tries to read or write in this Red Zone, MemoryScape halts the execution of
your program and notifies you. When the Red Zone is placed before the
block, MemoryScape detects underruns; conversely, if the Red Zone is
placed after the block, it detects overruns. It can also detect if your program
accesses the block after it has been freed.

Since your program halts when MemoryScape detects an overrun or under-
run, you know exactly where it overstepped the bounds of the block. The
event information shows the current stack trace, to allow you to pinpoint
where the event occurred. It also shows where the corrupted block was allo-
cated and deallocated, if appropriate.

Using Red Zones can significantly increase your program’s memory con-
sumption, so MemoryScape provides ways to limit their use. You can turn
them on and off at any time during your program’s execution using the Red
Zone button on the toolbar. You can also restrict Red Zone use by size range,

defining a range such that only block sizes within that range will be protected
by Red Zones. You can use multiple ranges collectively to exclude allocations
of a particular size.

NOTE >>Red Zone controls appear on the toolbar only on platforms
that support Red Zone capabilities. Memory debugging Red
Zones are supported on Linux, Solaris, and Mac OS X.

NOTE >>For a detailed description of how Red Zones work, see “Red
Zones Bounds Checking: dheap -red_zones” on page 38.

 Using Guard Blocks and Red Zones

54

Using Guard Blocks and Red
Zones
Guard blocks and Red Zones complement each other in several ways and
can be used together to find your memory corruption problem. While Red
Zones have a high memory consumption overhead, they provide immediate
notification when an illegal read or write occurs. Guard blocks add minimal
overhead, but detect only illegal writes, and report corruptions only when the
block is deallocated or when you generate a report. Finding a memory prob-
lem with MemoryScape may require a couple of passes to narrow down your
problem.

Start by enabling guard blocks prior to running your program. You can run a
Corrupt Memory report at any time to see whether you have any corrupted
blocks. The report shows the blocks that are corrupt and where they were
initially allocated. In your next run, turn off guard blocks and turn Red Zones
on. If memory is tight, enable Red Zones only where needed, either manually
or by using size ranges. MemoryScape should detect when a block is over-
written and stop execution.

A caveat here: the layout of memory is controlled by the heap manager and
the operating system. Depending on the size of your allocated block and its
alignment on the page of memory, there may be a gap between the block
and the Red Zone. The overrun or underrun must be large enough to span
the gap and reach the Red Zone, or MemoryScape will not generate an
event. This is a potential issue only if you are using memalign or posix_me-
malign. For malloc and calloc, the gap will probably be one less than the

size of the alignment, three or seven bytes. In any case, the block will still
show up as having a corrupted guard block, because guard blocks are placed
immediately before and after your allocated block without any gap.

Block Painting
Your program should initialize memory before it is used, and it should never
use memory that is deallocated. MemoryScape can help you identify these
kinds of problems by writing a bit pattern into memory as it is allocated or
deallocated. You can either specify a pattern or use the default, as follows:

• The default allocation pattern is 0xa110ca7f, which was chosen because
it resembles the word “allocate”.

• The default deallocation pattern is 0xdea110cf, which was chosen
because it resembles the word “deallocate”. In most cases, you want
MemoryScape to paint memory blocks when your program allocates
them.

If your program displays this value, you’ll be able to tell what the problem is.
In some cases, using these values will cause your program to crash. Because
MemoryScape traps this action, you can investigate the cause of the
problem.

You can turn painting on and off without restarting your program. If, for
example, you change the deallocation pattern, you’ll have a better idea when
your program deallocated the block. That is, because MemoryScape is using

 Block Painting

55

a different pattern after you change it, you will know if your program allo-
cated or deallocated the memory block before or after you made the
change.

If you are painting deallocated memory, you could be transforming a working
program into one that no longer works. This is good, as MemoryScape will be
telling you about a problem.

 Hoarding

56

Hoarding
You can stop your program’s memory manager from immediately reusing
memory blocks by telling MemoryScape to hoard (that is, retain) blocks.
Because memory blocks aren’t being immediately reused, your program
doesn’t immediately overwrite the data within them. This allows your pro-
gram to continue running with the correct information even though it is
accessing memory that should have been deallocated. Because it has been
hoarded, the data within this memory is still correct. If this weren’t the case,
any pointers into this memory block would be dangling. In some cases, this
uncovers other errors, and these errors can help you track down the
problem.

If you are painting and hoarding deallocated memory (and you should be),
you might be able to force an error when your program accesses the painted
memory.

MemoryScape holds on to hoarded blocks for a while before returning them
to the heap manager so that the heap manager can reuse them. As Memory-
Scape adds blocks to the hoard, it places them in a first-in, first-out list. When
the hoard is full, MemoryScape releases the oldest blocks back to your pro-
gram’s memory manager.

To hoard all deallocated memory, set the maximum KB and blocks to
unlimited by entering 0 in the hoarding control fields. To prevent or delay
your program from running out of memory when you use this setting, use
the advanced option to set MemoryScape to automatically release hoarded
memory when available memory gets low.

You can also set a threshold for the hoard size so MemoryScape can warn
you when available memory is getting low. If the hoard size drops below the
threshold, MemoryScape halts execution and notifies you. You can then view
a Heap Status or Leak report to see where your memory is being allocated.

Example 1: Finding a Multithreading Problem
When a multithreaded program shares memory, problems can occur if one
thread deallocated a memory block while another thread is still using it.
Because threads execute intermittently, problems are also intermittent. If
you hoard memory, the memory will stay viable for longer because it cannot
be reused immediately.

If intermittent program failures stop occurring, you know what kind of prob-
lem exists.

One advantage of this technique is that you can relink your program (as is
described in Creating Programs for Memory Debugging,” on page 121) and
then run MemoryScape against a production program that was not compiled
using the -g compiler debugging option. If you see instances of the hoarded
memory, you’ll instantly know problems have occurred.

This technique often requires that you increase the number of blocks being
hoarded and the hoard size.

Example 2: Finding Dangling Pointer
References
Hoarding is most often used to find dangling pointer references. Once you
know the problem is related to a dangling pointer, you need to locate where
your program deallocated the memory. One technique is to use block tag-

 Hoarding

57

ging (see Task 6: “Using Runtime Events” on page 90). Another is to use
block painting to write a pattern into deallocated memory. If you also hoard
painted memory, the heap manager will not be able to reallocate the mem-
ory as quickly.

If the memory was not hoarded, the heap manager could reallocate the
memory block. When it is reallocated, a program can legitimately use the
block, changing the data in the painted memory. If this occurs, the block is
both legitimately allocated and its contents are legitimate in some context.
However, the older context was destroyed. Hoarding delays the recycling of
the block. In this way, it extends the time available for you to detect that your
program is accessing deallocated memory.

 Debugging with TotalView

58

Debugging with TotalView
You may find that you want to exert greater control over your process execu-
tion than MemoryScape provides, or you may want to examine variables as
you go. To do so, MemoryScape can bring up the TotalView Process Window.

There are two ways to debug with TotalView:

• Select a process and use the pop-up menu options Debug in TotalView
or Debug in TotalView in New Window, Figure 31.

• Use the icon in the MemoryScape toolbar.

Be aware that opening the TotalView Process Window from within Memory-
Scape does not initialize TotalView in the same way as starting TotalView
directly. The definitions in your .tvdrc file and your saved breakpoints are not
loaded. However, you can load a breakpoint file using the Action Point menu
item in the Process Window. If you need the definitions in your .tvdrc file,
start TotalView first and open MemoryScape from within TotalView.

 Debugging with TotalView

59

Figure 31: Memory Debugging Session Menu

60

Memory Tasks

This chapter describes the tasks that you can perform using MemoryScape.
While each of these tasks can be read separately, you might want to skim
them in the order in which they are presented when you are learning
MemoryScape.

• Task 1: “Getting Started” on page 61

• Task 2: “Adding Parallel Programs” on page 69

• Task 3: “Setting MemoryScape Options” on page 71

• Task 4: “Controlling Program Execution” on page 82

• Task 5: “Seeing Memory Usage” on page 86

• Task 6: “Using Runtime Events” on page 90

• Task 7: “Graphically Viewing the Heap” on page 94

• Task 8: “Obtaining Detailed Heap Information” on page 97

• Task 9: “Seeing Leaks” on page 102

• Task 10: “Filtering Reports” on page 103

• Task 11: “Viewing Corrupted Memory” on page 108

• Task 12: “Saving and Restoring Memory State Information” on
page 111

• Task 13: “Comparing Memory” on page 113

• Task 14: “Saving Memory Information as HTML” on page 116

• Task 15: “Hoarding Deallocated Memory” on page 118

• Task 16: “Painting Memory” on page 119

The tasks described in the chapter assume that you are familiar with the
memory debugging concepts presented in “Locating Memory Problems”. If
you haven’t yet read that chapter, you should read it before trying to under-
stand or perform any of the tasks described in this chapter.

61

Task 1: Getting Started
This task shows you how to start your memory debugging session. It also
presents an overview of the kinds of activities you might perform.

The sections within this task are:

• “Starting MemoryScape” on page 61

• “Adding Programs and Files to MemoryScape” on page 65

• “Attaching to Programs and Adding Core Files” on page 66

• “Stopping Before Finishing Execution” on page 66

• “Exporting Memory Data” on page 66

• “MemoryScape Information” on page 67

• “Where to Go Next” on page 67

Starting MemoryScape
There are five different ways to start debugging memory:

1. Display the MemoryScape window by typing:

memscape

After MemoryScape displays its opening screen, you can begin adding
programs and files to your memory debugging session. If you are running
MemoryScape on a Macintosh, you can double-click on the program icon.
Figure 33 on page 63shows starting MemoryScape from a shell window
and parts of screens you’ll use before you actually start debugging mem-
ory.

For additional information, see Adding Programs and Files to Memory-
Scape.

2. Directly invoke MemoryScape upon a file by typing:

memscape program_name

MemoryScape responds by displaying its Home | Summary screen. You
can now use the run control to start your program. (Figure 34 on
page 64.)

If your program needs command-line options, you can add them by right-
clicking on the program’s name and selecting Properties, Figure 32.

Figure 32: Properties Dialog Box

62

63

Figure 33: Starting MemoryScape

64

If you change these arguments after program execution starts, restart
your program for the changes to take effect.

3. Directly invoke MemoryScape, adding needed program arguments.

memscape program_name -a arguments

Type all your program’s arguments after the -a. The next time you invoke
MemoryScape on your program, these arguments will automatically be
used.

MemoryScape displays its Home | Summary screen. (Figure 34.) Infor-
mation on changing these options is discussed in the previous bullet.

4. Directly invoke MemoryScape, adding needed command-line options.
Here are two skeletons on starting MemoryScape:

memscape [program_name [memoryscape_options] [-a argu-
ments]]
memscape memoryscape_options

MemoryScape options are typed either first or second, depending on if
you are also naming a file. In all cases, arguments to your program must
be the last arguments on the command line.

For more on options, see MemoryScape Command-Line Options,” on
page 150.

5. Invoke MemoryScape in batch mode, as follows:

memscript options

For more on batch mode, see MemoryScape Scripting,” on page 146.

Before you begin program execution, you may want to configure
MemoryScape for the different kinds of activities that it can perform. For
more information, see Task 3: “Setting MemoryScape Options” on page 71.
In most cases, the default options will meet your needs.

MemoryScape can provide memory information about a process only when
the process is stopped. Therefore, when you ask for a report, MemoryScape
stops execution. MemoryScape also stops execution when you ask for mem-
ory usage information. However, it quickly restarts execution after it collects
usage information.

You will probably use the commands on the Home | Summary screens to
stop and restart execution. The graph here either starts MemoryScape or
adds more programs, Figure 34.

Figure 34: MemoryScape Home Page

65

Adding Programs and Files to MemoryScape
To add programs, select the link on the Add Programs to Your
MemoryScape Session page. This page is automatically displayed if you do
not name a program when you invoke MemoryScape. In addition, you can
display this screen by selecting Home | Add Program. In general, to add a
program, just enter the information requested on a screen. Figure 35 shows
the screen displayed when you select Add new program.

Notice the left portion of the screen. If adding a file has more than one oper-
ation, the graphic displays the progression.

You can enter these kinds of information:

• The name of your program. Either a relative or absolute path name. In
addition, you can use the Browse button to locate the file.

• The name of the computer on which your program will execute. In most
cases, you’ll be running your program on the same machine as you used
to invoke MemoryScape.

You can either type the name of the machine on which your program will
execute or select a previously named machine. The machine entered
must have the same architecture as the machine on which you are run-
ning MemoryScape. For example, if you are running MemoryScape on a
linux-x86-64 machine, you cannot name a Linux-arm64system.

• Any command-line arguments. Arguments that you would use when
invoking your program without MemoryScape. Enter them in the same
way as on the command line.

If you enter or change an argument after your program begins executing,
your changes take effect only when you restart your program.

• Any new or changed environment variables. Enter them one to a line in
the following format: variable-name=value.

Again, your changes take effect only when you restart your program.

When a program executes upon a remote host, MemoryScape launches a
helper program named tvdsvr on that machine. This small program interacts
with your program and MemoryScape. Altogether, you’ll now have three run-
ning programs:

• MemoryScape on your local computer

• The program from which you will be obtaining memory information and
which is running on the remote host

Figure 35: Add New Program Screen

66

• tvdsvr, also running on the remote host

Attaching to Programs and Adding Core Files
If you wish to attach to a program that is already running or a core file, click
either the Attach to running program or Add core file link on the Add Pro-
grams to Your MemoryScape Session page.

Within the Attach to a Running Program screen, select the processes you
would like to attach to, then click the Next button. Adding a core file is done
in exactly the same way as a regular program except that you need to name
the location of the core file and the executable.

Stopping Before Finishing Execution
Immediately before your program finishes executing, MemoryScape halts the
program. This lets you examine memory state information at that time.

Stopping program execution when the program stops is optional. You can
use a MemoryScape option that lets your program finish executing. If you do
this, however, MemoryScape discards the state information associated with
the program. (For information on changing this option, see Task 3: “Setting
MemoryScape Options” on page 71.)

MemoryScape allows you to halt your program’s execution at any time. How-
ever, it does not allow you to select the exact code location for your program
to stop, and the program may stop inside a malloc or new call. If this hap-
pens, you may see an odd corrupt guard block or leak in your reports. When
your process resumes execution, it will clear up the odd result.

If you require fine program control using breakpoints, or you need thread
control, you will need to use TotalView with MemoryScape. See Debugging
with TotalView in the Locating Memory Problems section of this
documentation.

Exporting Memory Data
The information MemoryScape displays is created by analyzing information it
stores while your program executes and it reflects the current state. In many
cases, you will also want to compare this current state against an older state.
To do this, you will need to use the Export Memory Data command found
on the left side of many screens to write memory information to disk. At a
later time, you can read this exported data back into MemoryScape and then
either compare it to the current state or explore its information as if it were
the current state.

NOTE >>MemoryScape requires that all programs use the Memory-
Scape agent. In most cases, it does this behind the scenes for
you before the program begins executing. It cannot do this for
an already executing program or for a core file. So, just attach-
ing to an already running program will not provide the infor-
mation you need as the agent isn’t being used with your pro-
gram. In some cases, you may want to add it by starting the
program using the shell env command. However, the best
alternative is to link the MemoryScape agent. For details, see
“Linking Your Application with the Agent” on page 136.

NOTE >>We recommend that you export information frequently. It is bet-
ter to never use this information instead of wishing that you
had taken the time to export it.

67

MemoryScape Information
Most of the information you will use is contained within the Memory
Reports tab. Here is an overview of the kinds of reports that you can receive.

• Leak Detection. The Backtrace and Source reports in this section are
identical in format to those shown in the Heap Status reports. They differ
in that they only show leaked memory. You can group these leaks in
different ways. One of the most useful is to isolate the largest leaks and
then search for solutions to these problems first. For information on
these reports, see Task 9: “Seeing Leaks” on page 102.

These reports, as well as the Heap Status reports, can contain consider-
able information. You can exclude information from Source and Backtrace
reports by filtering it. See Task 10: “Filtering Reports” on page 103 for
more information.

• Heap Status. The reports in this section give you information on all of
your program’s allocations and deallocations. In particular,
MemoryScape also groups allocations by the place where the allocation
occurred. This information includes the backtrace—which is your
program’s call stack when the allocation occurred—and the source line
that allocated the memory.

The Backtrace and Source reports present this information in tabular
form. The Heap Status Graphical Report is an easy way to browse
through the program’s allocated blocks. Also, placing your mouse over a
block gives you information about that block. (See Figure 61 on page 95.)

For information on these Heap Status reports, see Task 7: “Graphically
Viewing the Heap” on page 94 and Task 8: “Obtaining Detailed Heap
Information” on page 97.

• Corrupted Memory. MemoryScape can analyze your program’s memory
blocks to see if the program wrote past a block’s boundaries. If you had
set the enable guard blocks option, selecting this report shows
corrupted blocks.

For information, see Task 11: “Viewing Corrupted Memory” on page 108.

• Memory Comparisons. MemoryScape lets you save memory state
information and read it back in. After it is read back in, you can compare
it against the current memory state. Or, you can read in an another save
memory state and compare the states against one another.

After MemoryScape reads in saved information, you can obtain reports
on the information in exactly the same way as you obtain reports for an
executing program.

For information, see Task 13: “Comparing Memory” on page 113.

• Memory Usage. MemoryScape can display charts of how much memory
is being used and how this memory is allocated in sections of your
program. It can do this for one or more of your program’s processes.

For information, see Task 5: “Seeing Memory Usage” on page 86.

Where to Go Next
Task 3: “Setting MemoryScape Options” on page 71

Describes how to change the MemoryScape default settings or to add ad-
ditional capabilities.

Figure 36: Report Tabs

68

Task 4: “Controlling Program Execution” on page 82
Shows how to start, stop, and restart your program in addition to several
other operations.

Display MemoryScape Reports
Most of the tasks that you’ll perform with MemoryScape involve creating
reports. The introduction to this chapter (“Memory Tasks” on page 60)
contains a list of these tasks.

69

Task 2: Adding Parallel
Programs
Everything discussed in Task 1: “Getting Started” on page 61 also applies to
parallel programs, but additional information is required before you can col-
lect memory information on programs running in parallel.

First, select Home | Add Program. (This is also the screen displayed if you
do not name a program when starting MemoryScape.) Next, select Add par-
allel program to launch the Add New Program dialog, Figure 37.

The information entered here could also be entered directly on a command
line, with no difference in the way your program behaves. For detailed infor-
mation, see “Setting Up MPI Debugging Sessions” on page 127.

The information that is unique to parallel programs is as follows:

MPI Type

Select one of the MPI systems in this list.

Tasks

Enter the number of processes that your program should create. This is
equivalent to the -np argument used by most MPI systems.

Nodes

Some MPI systems let you specify the number of nodes upon which your
tasks will execute. For example, suppose your program will use 16 tasks. If
you specify four nodes, four tasks would execute on each node.

MPI launcher arguments

If you need to send command-line information to your MPI system, enter
them in this area.

After selecting memory debugging options (the next task) and starting execu-
tion, MemoryScape begins capturing information from each executing task.
The sole difference between using MemoryScape on a parallel program ver-
sus a non-parallel program is that you have many processes to examine
instead of just one. Figure 38 shows the Process Status and Control area for
a 32-process MPI job.

Figure 37: Add New Program (Parallel) Screen

70

MemoryScape will be collecting data on each of the 32 processes, allowing
you to examine memory information for each. Examining each, however, is
seldom productive. Instead, you need to focus in on where problems may
occur. The Memory Usage charts are often the best place to start. Figure 39
shows part of a stacked bar chart.

Given this graph, you probably want to start with a look at process 6, as it is
using the most memory. You might also want to use memory comparison
features to compare process 6 to process 9, the process using the least
memory.

If possible, run your program a few times, stopping it periodically to get an
idea of how it uses memory so you can identify any patterns. Another time,
you may want to stop the program periodically when you see memory use
changing and then export memory data. In this way, you can perform
detailed analyses later. This is particularly important in situations where
access to HPC machines is limited.

Figure 38: Process Status and Control Area Figure 39: Process Status and Control Area, Stacked Bar Chart

NOTE >>For remote processes, the only way to reliably configure
MemoryScape is to set the TVHEAP_ARGS variable. For informa-
tion, see “TVHEAP_ARGS” on page 42.

71

Task 3: Setting MemoryScape
Options
This task discusses options that control MemoryScape activities. Memory-
Scape default options are probably right for most memory debugging tasks,
but in some cases, you may need additional activities. These are set using the
advanced Memory Debugging Options screen.

Some actions must be set before program execution begins. Others can be
set anytime. Also, while you normally enable and disable activities by select-
ing basic options, you can also enable them from the advanced options page.

Before reading this task, you should be familiar with the following
information:

“Locating Memory Problems”
Contains an overview of memory concepts and MemoryScape.

Task 1: “Getting Started” on page 61
Tells you how to start MemoryScape. It also contains an overview of the
kinds of information you can obtain.

Topics within this task are:

• “Basic Options” on page 71

• “Advanced Options” on page 74

• “Where to Go Next” on page 81

Basic Options
MemoryScape automatically displays the Memory Debugging Options
screen after you add a program. You can also display it by selecting Memory
Debugging Options on the primary navigation bar, Figure 40 on page 73.

72

73

Figure 40: Memory Debugging Options

74

These options control the level of debugging activity: Low, Medium, High, or
Extreme.

Low
Records all memory requests, including calls to malloc(), realloc(), and
other calls to your malloc library. It also includes calls to C++ operators
such as new and delete that indirectly use this library. It can even in-
clude memory management functions performed by some Fortran librar-
ies.

When you ask for a report, MemoryScape analyzes this recorded infor-
mation and displays the information you request.

This selection also sets automatic event notification.

In most cases, Low is all you’ll ever need.

Medium
In addition to performing all operations indicated by Low, MemoryScape
writes guard blocks before and after allocated memory blocks. For more
information on guard blocks and locating corrupted memory, see Task
11: “Viewing Corrupted Memory” on page 108.

This setting increases the size of the allocated memory block, but the ex-
tra overhead is small.

Select Medium only when you need to check for corrupted memory.
High

In addition to performing all operations indicated by the Low level, Mem-
oryScape writes a Red Zone after the allocated memory block and noti-
fies you if you access memory in this Red Zone. This is called an overrun.

In this case, the additional allocated memory can result in significant ex-
tra overhead.

Select High only if you need to check for memory overruns. As an alter-
native, select Low and use the Red Zones button on the task bar to turn
on Red Zones as needed for suspect allocations.

To find underruns in your allocated memory, see “Use Red Zones to
find memory access violations” on page 78.

Extreme
In addition to performing all operations indicated by the Low, Medium,
and High levels, MemoryScape paints allocated and deallocated mem-
ory as well as hoard memory.

These activities both decrease performance and use more memory. For
information on when to use these features, see Task 15: “Hoarding
Deallocated Memory” on page 118 and Task 16: “Painting Memory”
on page 119.

Select Extreme only if you need hoarding and painting.

For a combination of options unavailable on this screen, see “Advanced
Options” on page 74, which allow you to select options a la carte, as well as
change default settings.

Advanced Options
If you need to fine tune MemoryScape behavior, use the Advanced Options
display on the Memory Debugging Options screen.

NOTE >>Red Zone controls appear on the toolbar only on platforms that
support Red Zone capabilities. See the Platform Guide for spe-
cific platform support. This applies to the High and Extreme lev-
els only.

75

Select the Advanced Options button to display advanced options, Figure 40
on page 73.

Use the Basic Options button to return to the original display.

This screen has six sets of controls. In this figure, all six are selected. The ini-
tial options set here are pre-determined by the Low, Medium, High, and
Extreme selections in the basic screen.

Activities you can modify, enable, or disable:

• “Halt execution at process exit (standalone MemoryScape only)” on
page 75

• “Halt execution on memory event or error” on page 75

• “Guard allocated memory” on page 77

• “Use Red Zones to find memory access violations” on page 78

• “Paint memory” on page 80

• “Hoard deallocated memory” on page 80

Halt execution at process exit (standalone MemoryScape
only)

This option is visible only when running MemoryScape standalone without
TotalView.

When selected (Figure 41), MemoryScape halts your program’s execution
just before it stops executing. (In most cases, this is immediately before your
program executes its _exit routine.) At this time, you can analyze the memory
data that MemoryScape has collected.

If this option isn’t set, your program executes the _exit routine and Memory-
Scape discards the data it has collected for that process. This means that
MemoryScape cannot analyze your program’s memory use, so we recom-
mend that you leave this set.

Halt execution on memory event or error

When selected, MemoryScape halts your program’s execution just before it
detects that a problem will occur when your program calls a function in the
malloc library. We recommend that you leave this set

NOTE >>The only way to reliably place MemoryScape configuration infor-
mation into remote processes is to set the TVHEAP_ARGS vari-
able. For information, see “TVHEAP_ARGS” on page 42.

NOTE >>Notice the process controls on the left of this screen. Select one
or more processes to limit the activities being performed.

Figure 41: Halt execution at process exit Options

Figure 42: Halt execution on memory event or error

76

When your program allocates memory, MemoryScape records this and other
information in an internal table. Every time your program deallocates or real-
locates memory, it checks what is about to be done against this information.
If it detects that a problem will occur, it stops execution and displays an event
indicator, shown in Figure 43.

MemoryScape can watch for a number of events. Its default is to watch for
all, but you can specify specific events using the Advanced button which
launches the Memory Event Actions Dialog Box, Figure 44.

1. Select events to trigger: Select or unselect events. In most cases, you
should unselect events coming from a library or system you can’t
control.

Figure 43: Event Indicators

Figure 44: Memory Event Actions Dialog Box

NOTE >>This snapshot was created using TotalView Debugger Team and
Team Plus. If you are not licensed for these products, then the
two options Generate a core file and abort the program and
Generate a lightweight memory data file are unavailable.

77

2. When the above events trigger: Select the action to perform, as follows:

— Stop the process and show the event details: When
selected, additional options are available to generate a
core file or lightweight memory file.

— Generating a core file: MemoryScape writes the file to
disk and aborts execution. (The operating system rou-
tines that generate a core file cause the program to be
aborted.) As you are still within MemoryScape, you can
restart your program.

— G enerate a lightweight memory file: MemoryScape
creates a file similar to that written when you use the
File > Export command. This files can then be read back
into MemoryScape in the same way as exported .dbg
files. In contrast to a core file, your program continues to
execute after MemoryScape writes the file.

You can name the directory into which the MemoryScape writes
the file by identifying the location in the Directory field or use the
Browse button to navigate to a directory.

You can control this file’s name using the Naming Options but-
ton which launches the Memory Data File Options dialog, Figure
45.

If you change the prefix or file extension, the change is reflected in the Pre-
view area.

Guard allocated memory

When your program allocates a memory block, MemoryScape can write addi-
tional memory segments both before and after the block. These segments
are called guards. Immediately after creating the guards, MemoryScape ini-
tializes them to a bit pattern.

These guards can help you identify corrupted memory in two ways:

• When your program deallocates a memory block, MemoryScape checks
to determine if the pattern differs from when it first wrote the block. If so,
your program will have overwritten memory that it shouldn’t have used.

Figure 45: Memory Data File Options

78

This indicates that memory was corrupted. (MemoryScape writes one
pattern into the guard preceding a block and another into the one after
it.)

• Whenever you halt execution, you can ask MemoryScape to check for
corrupted guard blocks, which looks at all guard blocks surrounding your
allocations.

For information on guard blocks, see Task 11: “Viewing Corrupted Memory”
on page 108.

Enable guard blocks by selecting either a level of Medium or selecting the
check box in the Advanced screen. Figure 46 shows the portion of that
screen that controls guard blocks.

These options control the size of guard blocks and their pattern.

You can also set a maximum size for the guard blocks that surround a mem-
ory allocation. This can be useful because the size actually used for a guard
block can be greater than the pre-guard and post-guard sizes due to the way
an operating system aligns information. If memory is tight, setting a value
here ensures that blocks do not use an excessive amount of memory.

If the value is set to zero (0), which is the default, MemoryScape does not set
a maximum size.

Use Red Zones to find memory access violations

When your program allocates a memory block, MemoryScape can write an
additional memory buffer either before or after the block. These buffers are
called Red Zones. MemoryScape watches the Red Zone for illegal read or
write access.

To enable Red Zones, set the debugging level to High (in the Basic Options)
or select the option “Use Red Zones to find memory access violations” on
the Advanced Options screen, Figure 47.

This dialog controls the type of error to detect and defines ranges and values
for some of the detection types. In addition to detecting overruns and under-
runs (discussed above), you can customize Red Zone definitions, discussed
in “Customizing Red Zones” on page 79.

Red Zones can help identify where an illegal access occurs in these cases:

• Overruns: reads or writes past the bounds of the allocated block,
detected by placing a Red Zone after the block.

Figure 46: Guard allocated memory Option

NOTE >>Red Zone controls appear on the toolbar only on platforms that
support Red Zone capabilities. See the Platform Guide for spe-
cific platform support.

Figure 47: Advanced Red Zone Option

79

• Underruns: reads or writes before the bounds of the allocated block,
detected by placing a Red Zone before the block.

• Read / write access after a block is deallocated.

If you select “Detect memory access after it has been freed”, you are noti-
fied when this occurs. MemoryScape retains the deallocated blocks to
monitor them for both read and write access. This option will increase mem-
ory consumption in your program.

One way to limit the overhead incurred in using Red Zones is to restrict their
use to blocks of specified sizes. (See “Restricting Red Zones” on page 79 for
details on using the option “Restrict Red Zones to allocations within size
ranges.”) Another way is to turn Red Zones on and off during program exe-

cution using the Red Zones button ,on the toolbar. Because of the

increased memory consumption associated with Red Zones, use them with
caution.

To know when your program exits due to an access violation, use the last
option, “Set the exit value for an access violation.”

Restricting Red Zones

You can restrict Red Zones to apply to blocks of defined sizes. For instance, if
you suspect that your program is overwriting the bounds of a large array or
structure, you can specify a range that includes the size of the array or struc-
ture, Figure 48. (Note that specifying 0 as the upper limit means the upper
bound is unlimited.) For example, if you have an array that is 1500 bytes, you

can define the range to be from 1000 to 2000 bytes, and Red Zones are
applied only to allocations within this range. This limits the additional over-
head in memory consumption and targets your array or structure.

Customizing Red Zones

You can customize Red Zones in several ways using the screen in Figure 49.

• Buffer placement: the Red Zone buffer may be placed before, after, or
both before and after the allocated block. Use caution when adding Red
Zones both before and after your allocations, as this doubles the Red
Zone overhead.

• Buffer size: the default is the target machine page size, but you can
modify this. The number of bytes entered is rounded to the nearest
alignment specified by the machine.

NOTE >>For a detailed description of how Red Zones work, see “Red
Zones Bounds Checking: dheap -red_zones” on page 38.

Figure 48: Red Zone Size Ranges

80

• You can elect not to use buffers. This setting detects whether a block is
used after having been freed, with much lower memory consumption.

• Allocation alignment according to page start: this setting is useful for
catching underruns.

• Allocation alignment according to page end: the default alignment for
this setting is determined by the target machine and capped at the
machine’s page size. An alignment of 1 results in a final start address the
same as the provisional start address. Other alignment values should be
to a power of 2.

Paint memory

When your program reads a data value, you are assuming that the program
has already set the memory to some value. If your program hasn’t seen a
value or if it tries to read data from the block after you’ve deallocated it, an
error has occurred. MemoryScape can help you detect these problems by
setting the value of allocated or deallocated blocks to a value. When your
program reads these painted values, it may be able to detect that there is a
problem. In some cases, your program may even stop executing.

Enable painting either by selecting a level of Extreme in the Basic Options, or
selecting the check box in the Advanced screen. Figure 50 shows painting
controls

These controls let you separately enable allocations and deallocations (you
might want to use one and not the other if memory is tight) and set the pat-
tern that MemoryScape writes. Notice that the default patterns resemble the
words “allocate” and “deallocate.

For information on painting, see Task 16: “Painting Memory” on page 119.

Hoard deallocated memory

After a program deallocates memory, it is quite possible that a pointer still
points into the deallocated block. If the program uses that pointer to access
information in this block, this data can be corrupt. Having MemoryScape
hold on to deallocated blocks for awhile helps to keep this data correct.
Holding on to deallocated blocks is called hoarding. By retaining this memory,

Figure 49: Custom Red Zone Options

Figure 50: Paint memory Option

81

you reduce program failures. More importantly, because the program contin-
ues to execute, additional and often related memory errors occur—errors
that can help you diagnose the problem.

Enable hoarding either by selecting a level of Extreme in the Basic Options,
or by selecting the check box in the Advanced screen. Figure 51 shows the
portion of that screen that controls hoarding.

This dialog displays the hoard size and the number of blocks to be hoarded,
which you can customize.

Hoarding deallocated memory may increase the risk of running out of avail-
able memory sooner than expected because deallocated memory is not
released back to the heap manager. Reduce this risk by automatically releas-
ing the hoarded memory when available memory gets low. You can also
receive an event alerting you when the hoard size drops below the defined
threshold. At that point, you know your program is getting close to running
out of memory.

For more information, see “Hoarding” on page 56 and Task 15: “Hoarding
Deallocated Memory” on page 118.

Where to Go Next
Now that MemoryScape is set up, you are ready to start your program exe-
cuting under MemoryScape control. For more information, see Task 4:
“Controlling Program Execution” on page 82.

Figure 51: Hoard deallocated memory Option

82

Task 4: Controlling Program
Execution
This task discusses how to control a program’s execution from within Memo-
ryScape. Once you’ve added programs to MemoryScape, you are ready to
execute your program(s). During execution, MemoryScape collects memory
information. For long-running programs, you will want to start execution,
stop it, look at memory information, and then continue execution.

MemoryScape allows you to halt your program’s execution at any time. How-
ever, it does not allow you to select the exact code location for your program
to stop, and the program may stop inside a malloc or new call. If this hap-
pens, you may see an odd corrupt guard block or leak in your reports. When
your process resumes execution, it will clear up the odd result.

If you require fine program control using breakpoints, or you need thread
control, use TotalView with MemoryScape. See “Debugging with TotalView”
on page 58.

Before reading this task, you should be familiar with the following:

Locating Memory Problems,” on page 1
An overview of memory concepts and MemoryScape.

Task 1: “Getting Started” on page 61
How to start MemoryScape and an overview of the kinds of information
you can obtain.

Task 3: “Setting MemoryScape Options” on page 71
How to configure MemoryScape so that it performs the activities you
want it to perform.

The controls for starting and stopping program execution are on the Home |
Summary screen as well as the lower left corner of many screens. Additional
controls are in the Manage Process and Files screen, Figure 52 on page 84.

83

84

Figure 52: Execution Controls

85

Topics in this task are:

• “Controlling Program Execution from the Home | Summary Screen”
on page 85

• “Controlling Program Execution from the Manage Processes Screen”
on page 85

• “Controlling Program Execution from a Context Menu” on page 85

• “Where to Go Next” on page 85

Controlling Program Execution from the
Home | Summary Screen
The controls on the Home | Summary screen start and halt execution of all
your processes (Figure 52 on page 84). For additional controls or to control
processes separately, use the Manage Processes | Manage Processes and
Files screen.

MemoryScape cannot generate information while a process is running, so it
automatically halts the program for you. You are later asked if you want to
resume execution.

While your program executes, MemoryScape graphically displays the mem-
ory usage, reflecting a pattern of memory use. If you see that the graph’s
shape is different from one run to another, you may learn when to halt the
program and inspect memory. Or, if memory use grows sharply and unex-
pectedly, you may want to stop the program and see why.

Controlling Program Execution from the
Manage Processes Screen
The controls on the Manage Process and Files screen include the ability to
run, halt, kill, and restart execution. In addition, you can detach a program
from MemoryScape, which means remove it from MemoryScape.

You can control which processes this command affects by selecting the pro-
cesses from the list on this screen.

Controlling Program Execution from a Context
Menu
When you right-click on a process in the bottom left part of most screens,
MemoryScape displays a context menu that also includes execution controls.
These controls operate in the same way as those in other screens.

Where to Go Next
• If MemoryScape detects a problem while your program is executing, it

can stop execution, letting you know the kind of problem that just
occurred. For more information, see Task 6: “Using Runtime Events” on
page 90.

• You can display charts of your memory use. For more information, see
Task 5: “Seeing Memory Usage” on page 86.

• After you stop execution, you will want to obtain reports on memory
activity. You will find a list of these tasks in the introduction to this
chapter (“Memory Tasks” on page 60).

86

Task 5: Seeing Memory Usage
This task generates charts that visually display memory usage information,
along with detailed tables that numerically describe this information.

Before reading this task, you should be familiar with the following
information:

Locating Memory Problems,” on page 1
An overview of memory concepts and MemoryScape.

Task 1: “Getting Started” on page 61
How to start MemoryScape and an overview of the kinds of information
you can obtain.

Task 3: “Setting MemoryScape Options” on page 71
Describes how to configure MemoryScape so that it performs the activi-
ties you want it to perform.

The totals shown in the Memory Usage reports may differ slightly from those
n the Heap Status reports, because heap status is generated from monitor-
ing program requests for memory (malloc or new) and program release of
memory (free or delete), while memory usage data is obtained from the
operating system facilities. Depending on the operating system, memory
usage totals may include anonymous memory regions that the program or
one of its libraries may have mapped into its address space. The totals also
include a small amount of overhead from MemoryScape itself.

The Memory Usage report is intended to be a quick check of your program’s
memory usage from the system’s perspective. For detailed information on
your program’s use of the heap, see the Heap Status reports.

To display memory usage data, select Memory | Memory Usage. Select
these reports:

• High-level process report

• Detailed program and library report

• Chart Report

Topics in this task are:

• “Information Types” on page 86

• “Process and Library Reports” on page 87

• “Chart Report” on page 87

• “Where to Go Next” on page 89

Information Types
While all information can be useful, the data in the heap column is the most
interesting as it contains information that you can control. Memory Usage
reports display the amount of memory:

Text Your program uses to store your program’s machine code instructions.

Data Your program uses to store uninitialized and initialized data.

Heap Your program is currently using for data created at runtime.

Stack Used by the currently executing routine and all the routines in its back-
trace.

If you are looking at a multithreaded process, MemoryScape only shows
information for the main thread’s stack.

The stack size of some threads does not change over time on some archi-
tectures. On some systems, the space allocated for a thread is consid-
ered part of the heap.

87

Stack Virtual Memory
The logical size of the stack. This value is the difference between the cur-
rent value of the stack pointer and the value reported in the Stack col-
umn. Also, this value can differ from the size of the virtual memory
mapping in which the stack resides.

Total Virtual Memory
The sum of the sizes of the mappings in the process's address space.

Process and Library Reports
The Process report (the bottom snapshot in Figure 53) lists all your pro-
cesses and information about them. To sort, click on a column header.

In a similar manner, a Detailed program and library report of your mem-
ory usage shows this information for your program and all libraries it uses.

Not shown in this figure are the process controls on the left. By selecting (or
unselecting) processes and threads, you can control which are shown in
these tables.

It can be difficult to know what to do if you identify a problem here. The only
component over which you have direct control is the one you’ve written. For-
tunately, this is usually where the problem is. If, however, the problem is with
a library that your program loaded, you do have options. If you have control
over the library, you can investigate that library’s behavior. For example,
MemoryScape does identify leaks within libraries.

If the problem is one you can’t control, your choices are limited. You could
attempt to obtain a different version of the library. Or, if you can identify the
cause of the problem, write a substitute function.

If, however, the problem is in your code, MemoryScape offers many ways to
drill down and obtain information.

Chart Report
While the information tables in the Process and Library reports are useful,
the best place to start is the Chart report, which offers a graphic look at your
program’s memory data, Figure 54 on page 88.

Figure 53: Memory Usage Library and Process Reports

88

Figure 54: Memory Usage

89

MemoryScape can display your information using a range of charts: Bar,
Stack Bar, Line, and Pie, available from the pulldown list in the Controls area.
In addition, you can zoom in or out to control the view.

The Options area at the top controls which of the six types of memory infor-
mation are displayed.

The process area below the charts control which processes and threads to
chart.

Where to Go Next
• MemoryScape can stop execution when an error occurs or when you

want notification for a block being allocated or reallocated. See Task 6:
“Using Runtime Events” on page 90 for more information.

• After you stop execution, you will want to obtain reports on memory
activity. You will find a list of these tasks in the introduction to this
chapter (“Memory Tasks” on page 60).

90

Task 6: Using Runtime Events
This section describes how to tell MemoryScape to stop execution either
when an event or an error occurs. Telling you that a problem has occurred is
called notification. Notification requires that the Halt execution on memory
event or error option be enabled, which is the default. (This option is
located on the advanced display of the Memory Debugging Options
screen.

In addition, You can tell MemoryScape to notify you when a block is allocated
or deallocated by setting a notification within the Block Properties window.

Before reading this task, you should be familiar with the following
information:

Locating Memory Problems,” on page 1
Contains an overview of memory concepts and MemoryScape.

Task 1: “Getting Started” on page 61
Tells you how to start MemoryScape. It also contains an overview of the
kinds of information you can obtain.

Task 3: “Setting MemoryScape Options” on page 71
Describes how to configure MemoryScape so that it performs the activi-
ties you want it to perform.

Topics within this task are:

• “Error Notifications” on page 90

• “Deallocation and Reuse Notifications” on page 92

• “Where to Go Next” on page 93

Error Notifications
When your program uses a function from the malloc library, MemoryScape
intercepts the call using a process called interposition (see “Behind the
Scenes” on page 8). If the action is an allocation, MemoryScape records
information about it. If your program is deallocating a block, MemoryScape
looks for the block in its table. Based on what it finds, it can stop execution
and notify you that a problem is about to occur. For example, if the block was
previously deallocated, MemoryScape can stop execution and tell you about
the problem.

For information on which events stop execution, see the help or examine the
contents of the dialog box displayed when you click the Advanced button on
the Memory Debugging Options Advanced screen.

91

If an event occurs, MemoryScape stops execution and places an event indi-
cator on the screen, Figure 56.

You can now display the Manage Processes| Process Event screen. Memo-
ryScape will take you directly there if you click on the event link, Figure 57.

Figure 55: Memory Event Notification Figure 56: Event Indicator

92

You are now ready to look for detailed information about the notification
event. The top of the window (the text in bold) describes the event. Immedi-
ately below this text are four tabs: Event Location, Allocation Location,
Deallocation Location, and Block Details. The information in the first three
is of the same kind as that shown in Figure 57.

When MemoryScape intercepts a call to the malloc library, it also records the
backtrace associated with the function call (that is, it records the function’s
call stack). Depending on the event, one or more of these four tabs will have
data. For example, if you try to free stack memory, the only location that
MemoryScape knows about is the place where the event occurred.

To assist you in locating a problem, MemoryScape saves some of the code
surrounding the line in your program that caused the event.

The Block Details tab presents information about this event in a different
form. This tab is very useful for obtaining additional information about the
block, Figure 58.

Deallocation and Reuse Notifications
You can configure MemoryScape to notify you when an already allocated
block is deallocated or reallocated, like this:

1. Start, then stop execution.

Figure 57: Process Events Screen

Figure 58: Block Details Tab

93

2. Display the Memory Reports | Heap Status | Heap Status Graphical
Report screen.

3. Locate the block you want to be notified about and right-click on it.

4. In the pop-up, select Properties, Figure 59.

5. Select one or both of the Notify when deallocated and Notify when
reallocated check boxes at the bottom of the window.

If an event occurs while the program is executing (see Task 4: “Controlling
Program Execution” on page 82), MemoryScape stops execution and dis-
plays its indicator symbol.

You can now display the Manage Processes| Process Event screen (Figure
57 on page 92). This is described in the previous section of this task.

Where to Go Next
• To visually display information about your memory use, see Task 7:

“Graphically Viewing the Heap” on page 94.

• After you stop execution, you will want to obtain reports on memory
activity. You will find a list of these tasks in the introduction to this
chapter (“Memory Tasks” on page 60).

Figure 59: Block Notifications

94

Task 7: Graphically Viewing the
Heap
This task is the first of a set of tasks that explain how to explore and examine
your program’s memory. Other important tasks for examining memory are
Task 9: “Seeing Leaks” on page 102 and Task 11: “Viewing Corrupted Mem-
ory” on page 108.

Before reading this task, you should be familiar with:

Locating Memory Problems,” on page 1
An overview of memory concepts and
MemoryScape.

Task 1: “Getting Started” on page 61
How to start MemoryScape and an overview of the kinds of information
you can obtain.

Task 3: “Setting MemoryScape Options” on page 71
Describes how to configure MemoryScape so that it performs the activi-
ties you want it to perform.

Task 4: “Controlling Program Execution” on page 82
Shows how to start and stop program execution under MemoryScape
control.

To display a grid showing how your program is using the heap, select Mem-
ory Reports | Heap Status, and then click Heap Status Graphical Report.
(See Figure 61 on page 95.)

If your program has more than one process or thread, you should select the
thread or process of interest in the Current Processes area on the left side
of the screen.

Topics in this task are:

• “Window Sections” on page 94

• “Block Information” on page 96

• “Bottom Tabbed Areas” on page 96

• “Where to Go Next” on page 96

Window Sections
The Heap Status Graphical Report screen has three sections. The top has
controls for viewing and filtering the graph. The middle contains a set of
blocks that represent your memory allocations, and the bottom section pro-
vides information about blocks that you select in the middle. This bottom
section can contain either heap information or a Backtrace report. (For infor-
mation on Backtrace reports, see Task 8: “Obtaining Detailed Heap
Information” on page 97.)

The grid is this screen’s most prominent feature. As most programs use more
memory than can easily be displayed, you can use the zoom controls (identi-
fied by the magnifying glass in the top area) to either zoom out to see more
information or zoom in to get a better view.

Figure 60: Zoom and Search Controls

95

You can also use the search controls to move from memory block to memory
block using the curved arrow buttons in the control area. The search button
tells MemoryScape what kind of block to look for. There are four choices,
shown in Figure 60.

By default, leaks are not marked. If, however, you select the Detect Leaks
check box, MemoryScape takes a moment to analyze the heap. It then dis-
plays leaked memory blocks in red, Figure 61.

If you select the Enable Filtering check box, MemoryScape applies filters to
the display. Unlike other reports where filtered information is removed, this
information is displayed in gray. For information on filtering, see Task 10: “Fil-

tering Reports” on page 103.

Figure 61: Heap Status Graphical Report Screen

96

Block Information
If you place the cursor over a block, MemoryScape opens a pop-up contain-
ing information about the block, Figure 61. The information in this window is,
of course, specific to the block. For example, this pop-up shows that guard
blocks were being used when the block was allocated.

When you select a block, MemoryScape highlights all other blocks that have
the same backtrace. So, if 100 different blocks share the same backtrace—
which means that the execution path within the program is the same, and
they were allocated from the same place in your program—they’ll be high-
lighted. (Full details can be found in Task 8: “Obtaining Detailed Heap
Information” on page 97.)

Bottom Tabbed Areas
The left most block within the Heap Information tab at the bottom of the
screen summarizes of the type of information that can be displayed as well
as explains the color coding used for these blocks, Figure 62.

When you select a block, MemoryScape places information in the center and
right boxes within the Heap Information tab. This information in the center
list is the same as in the pop-up displayed when you place the mouse over a
block. The information on the right is summary information about related
blocks.

The Memory Content tab displays the bytes stored in memory. For more
information, see “Viewing Memory Contents” on page 110.

Where to Go Next
• Typically, the Heap Status Graphical Report is a starting point for

viewing other reports. For a list of reports, see to the introduction of this
chapter, “Memory Tasks”.

• If you want to continue execution, use the execution controls described
in Task 4: “Controlling Program Execution” on page 82.

• You may want to set notifications that tell you when a block is deallocated
or reused. For more information, see “Deallocation and Reuse
Notifications” on page 92.

Figure 62: Heap Status Graphical Reports: Tabbed Area

97

Task 8: Obtaining Detailed
Heap Information
This task discusses the Source and Backtrace reports, Figure 63.

Figure 63: Heap Status Source and Backtrace Reports

98

These reports are the most important sources of information within Memo-
ryScape. While these reports relate directly to the Heap Status reports, they
are available throughout MemoryScape as separate reports or as areas
within a report.

The totals shown in the Heap Status reports may differ slightly from those n
the Memory Usage reports, because heap status is generated from monitor-
ing program requests for memory (malloc or new) and program release of
memory (free or delete), while memory usage data is obtained from the
operating system facilities. Depending on the operating system, memory
usage totals may include anonymous memory regions that the program or
one of its libraries may have mapped into its address space. The totals also
include a small amount of overhead from MemoryScape itself.

The Memory Usage report is intended to be a quick check of your program’s
memory usage from the system’s perspective. For detailed information on
your program’s use of the heap, use the Heap Status reports.

Which report to use, or when to use it, depends on how you want to
approach the data. In general, most users prefer to approach this kind of
information through Source reports. However, some like to see memory
information organized on the way the program creates blocks.

Before reading this task, you should be familiar with the following
information:

Locating Memory Problems,” on page 1
An overview of memory concepts and MemoryScape.

Task 1: “Getting Started” on page 61
How to start MemoryScape and a summary of the kinds of information
you can obtain.

Task 4: “Controlling Program Execution” on page 82
How to start and stop program execution.

Task 7: “Graphically Viewing the Heap” on page 94
How to obtain a graphic overview of the way this heap is laid out, as well
as how to get more detailed information about individual blocks.

Topics in this task are:

• “Heap Status Source Report” on page 98

• “Heap Status Source Backtrace Report” on page 101

• “Where to Go Next” on page 101

Heap Status Source Report
The Source report (the top screen in Figure 63 on page 97) contains three
scrolling areas as well as a top control area. The area Data Source specifies
the information to display: allocations, deallocations, or the hoard. In most
cases, you’ll want to see allocations. You cannot combine these kinds of infor-
mation into one report.

By default, MemoryScape does not show leaks. To see them, select the
Detect Leaks check box. If you have created a filter, apply it to the display by
using the Enable Filtering check box. (For information on filtering, see Task
10: “Filtering Reports” on page 103.)

The top area organizes information by your program’s source files. The Bytes
column contains the amount of memory associated with a line in each file.
Sorting on the Bytes column while displaying leaks helps to focus on those
that waste the most memory; why focus on a leak that is under 1K when
there’s a 10M leak?

By repeatedly clicking, you’ll soon get to the line in your program from which
memory was allocated. The information here shows each block allocated
from this line and the backtrace ID associated with it.

99

There is a distinction between backtraces associated with the statement and
the statement in your program that allocates memory. Suppose you have a
function called create_list(). This function could be called from many differ-
ent places in your code, and each location will have a separate backtrace. For
example, if create_list() is called from eight different places and each was
called five times, there would be eight different backtraces (and eight differ-
ent backtrace IDs) associated with it. Each individual backtrace would have
five items associated with it.

100

As you click on lines in the top portion, the bottom right area shows lines
from your source code. The line mentioned in the top area is highlighted
here, Figure 64.

Figure 64: Uncovering Information

101

When you need to see the backtrace, just click on the backtrace ID at the bot-
tom left. As you select different levels in the stack in the backtrace, the
display in the source area changes.

Heap Status Source Backtrace Report
The Backtrace Report (the bottom screen in Figure 63 on page 97) contains
similar information, organized by backtraces rather than source files. The
backtrace ID displayed here is just a number that MemoryScape creates,
useful in helping you coordinate information in different screens and tabs as
it doesn’t change from report to report.

Clicking on a line in the top portion of the backtrace displays a source line.

Where to Go Next
• These reports can contain too much information, which can be simplified

using filters. See Task 10: “Filtering Reports” on page 103 for more
information.

• Task 14: “Saving Memory Information as HTML” on page 116 describes
one method of saving memory information. Task 12: “Saving and
Restoring Memory State Information” on page 111 describes a second.

• Task 13: “Comparing Memory” on page 113 contains information on
comparing more than one memory state.

102

Task 9: Seeing Leaks
The Leak reports are essentially the same as the Heap Status Source and
Heap Status Backtrace reports. Honing in on the information you want is
simpler in these reports as there are fewer controls and less data. For exam-
ple, there is no Data Source area. The real difference between a Heap
Status Source report and a Leak Source report is that a Leak Source report
does not show allocations that are not leaked. That is, these two reports
focus only on leaked memory.

As using these Leak reports is identical to using Heap Status reports, see
Task 8: “Obtaining Detailed Heap Information” on page 97.

103

Task 10: Filtering Reports
The amount of information displayed in a Leak Detection or Heap Status
report can be considerable. In addition, this information includes memory
blocks allocated within all libraries, shared or otherwise, that your program
uses. In other cases, your program may be allocating memory in many differ-
ent ways, and you want to focus on only a few of them. This task shows you
how to use filters to eliminate information from reports.

Before reading this task, you should be familiar with the following
information:

Locating Memory Problems,” on page 1
An overview of memory concepts and MemoryScape.

Task 1: “Getting Started” on page 61
How to start MemoryScape with a summary of the kinds of information
you can obtain.

Task 3: “Setting MemoryScape Options” on page 71
How to configure MemoryScape so that it performs the activities you
want it to perform.

Task 4: “Controlling Program Execution” on page 82
How to start and stop program execution.

Creating Reports
How to create reports, discussed in the introduction to this chapter
(“Memory Tasks” on page 60).

When filtering is enabled, MemoryScape considers each enabled filter and
applies it to the report’s data. Filters can have any number of actions associ-
ated with them. Enable a filter by selecting the check box at the top of a
report.

Topics in this task are:

• “Adding, Deleting, Enabling and Disabling Filters” on page 103

• “Where to Go Next” on page 107

Adding, Deleting, Enabling and Disabling
Filters
To begin filtering data, right-click on a routine name or line number in the top
pane of a Leak Detection, Heap Status Source or Backtrace report, or in a
Heap Status Graphical report, and select Filter out this entry from the con-
text menu.

This command adds the routine to those that can be filtered. It does not
actually enable filtering; enabling is done by selecting the Enable Filtering
check box in the command area of many screens.

To apply the filter, select Manage Filters, which is in the Operations area on
the left side of the screen, Figure 66.

Figure 65: Filter out this entry Context Menu

104

The controls in this dialog box:

 Enable/Disable
When checked, MemoryScape enables the filter.

Add Displays the Add Filter dialog box where you define a filter (discussed
later in this section in Adding and Editing Filters).

Edit Displays a dialog box where you can change the selected filter’s defini-
tion. The displayed Edit Filter dialog box is identical to the Add Filter di-
alog box.

Remove
Deletes the selected filter.

 Up and Down

Moves a filter up or down in the filter list. Filters are applied in the order in
which they appear, so you should place filters that remove the most en-
tries at the top of the list. Filtering can be a time-consuming operation, so
the right order can increase performance.

Enable All
Enables (checks) all filters in the list.

Disable All
Disables (unchecks) all filters in the list.

Adding and Editing Filters
Selecting the Add button in the Memory Debugging Data Filters dialog
(Figure 66), launches the Add Filter dialog, Figure 67.) Similarly, clicking the
Edit button launches a nearly identical window.)

Figure 66: Memory Debugging Data Filters Dialog Box

105

The controls in this window are:

Filter name
The name of the filter. This name will appear in the Memory Debugging
Data Filters dialog box.

In Figure 67, notice that one filter is named “Function Name contains
_S_chunk_alloc”. This is the name created by MemoryScape when you
use the context menu to add a function name. Similarly, you’ll see a filter
named “Line Number = 490”.

Share filter
Creates a shared filter. Shared means that anyone using MemoryScape
can use the filter.

Add Adds a blank line beneath the last criterion in the list. You can now enter
information defining another criterion for this filter in this new line.

Remove
Deletes the selected criterion. To select a criterion, select the number to
the left of the definition.

Up and Down
Changes the order in which criteria appear in the list. Criteria are applied
in the order in which they appear, so you should place criteria that re-
move the most entries at the top of the list. Filtering can be a time-con-
suming operation, so this can increase performance.

Exclude data matching
For more than one criterion, the selected radio button indicates if any or
all of the criteria have to be met.

any of the following
Removes an entry when the entry matches any of the criteria in
the list.

all of the following
Removes a memory entry only if it fulfills all of the criteria.

Evaluate
Limits which backtraces MemoryScape looks at.

allocation focus entry only
Removes an entry only if the criteria is valid on an entry that is also
the allocation focus.

Figure 67: Add Filter Dialog Box

NOTE >>This button appears only if you have write permissions for the
MemoryScape lib directory.

106

The allocation focus is the point in the backtrace where Memory-
Scape believes your code called malloc().

For example, if you define a filter condition that says Function
Name contains my_malloc and set this entry to allocation focus
entry only, MemoryScape removes entries only whose allocation
focus contains my_malloc. That is, it removes only allocations that
originated from my_malloc.

In contrast, if you set this entry to all backtrace entries, Memory-
Scape removes all blocks that contain my_malloc anywhere in
their backtrace.

all backtrace entries
Applies filter criteria to all function names in the backtrace.

Criteria
A filter is made up of criteria. Each criterion specifies what to eliminate
from the list. Each criterion has three parts: a property, an operator, and a
value. For example, you can look for a Process/Library Name (the prop-
erty) that contains (the operator) strdup (the value).

Property
When evaluating an entry, MemoryScape can look at one of eight
properties for one criterion, Figure 68. Select one of the items
from the pulldown list. These items are:

Operator
Indicates the relationship the value has to the property, Figure 68. Select
one of the items from the pulldown list. If the property is a string, Memo-
ryScape displays the following list:

If the item is numeric, it displays the following list:

Value A string or a number that indicates what to compare.

Backtrace ID PC

Class Name Process/Library Name

Count Size (bytes)

Function Name Source File Name

Line Number

contains not contains

ends with starts with

equals not equals

<= >=

< >

= !=

107

Where to Go Next
After creating a filter, you’ll want to use it. You’ll find a list of tasks associated
with reports at the beginning of this chapter (“Memory Tasks” on page 60).

Figure 68: Add Filter Dialog Box

108

Task 11: Viewing Corrupted
Memory
If your program writes data either immediately before or immediately after
an allocated block, it can alter data that other parts of the program will use.
That is, this error means that these values are not what they are expected to
be. This task shows how MemoryScape can help you with this problem.

Before reading this task, you should be familiar with the following
information:

Locating Memory Problems,” on page 1
An overview of memory concepts and MemoryScape.

Task 1: “Getting Started” on page 61
How to start MemoryScape and a summary of the kinds of information
you can obtain.

Task 3: “Setting MemoryScape Options” on page 71
How to configure MemoryScape so that it performs the activities you
want it to perform.

Task 10: “Filtering Reports” on page 103
How you can remove information from the report that you do not need or
want to see.

Topics in this task are:

• “Examining Corrupted Memory Blocks” on page 108

• “Viewing Memory Contents” on page 110

Examining Corrupted Memory Blocks
When your program uses functions in the malloc library, MemoryScape inter-
cepts them, recording the action you have requested. If you enable guard
blocks—by selecting Medium in the Memory Options screen—the Memo-
ryScape agent also writes small blocks of information before and after all
blocks that your program allocates. These blocks are called guard blocks. The
guard block preceding the allocated block is initialized to one value (by
default, this value is 0x77777777). The guard block following the allocated
block is initialized to a second value (by default, 0x99999999). Because they
are different, MemoryScape can determine which block was the source of
the problem.

If your program writes data into either of the guard blocks, it changes this
pattern. MemoryScape can detect this change in two ways:

• When your program deallocates a memory block, MemoryScape checks
the guard block. If your program altered a guard block, MemoryScape
stops execution and notifies you about the data corruption. (Task 6:
“Using Runtime Events” on page 90.)

• You can halt execution (see Task 4: “Controlling Program Execution” on
page 82) and display the Memory Reports | Corrupted Memory
screen. This setting has MemoryScape examine all guard blocks and
check for changes. If any are found, it displays a report similar to that
shown on the right side of Figure 69.

109

The Corrupted Memory report contains two sections: a top section graphi-
cally displaying each corruption, and a bottom section containing a backtrace
and the allocation source line for the allocated block. This is the same kind of
information that is displayed in other reports. For information on these
reports, see Task 8: “Obtaining Detailed Heap Information” on page 97.

If you place your cursor over a block, MemoryScape displays additional infor-
mation about the block. In addition, if you right-click on a block and select
Properties from the context menu, MemoryScape displays its Block Proper-
ties window. This window contains all the information that appears in the

Figure 69: Corrupted Memory

110

pop-up display and it may contain additional information. For more on using
the Block Properties window, see Task 6: “Using Runtime Events” on
page 90.

Viewing Memory Contents
The Memory Contents tab directly displays the information in memory. See
Task 11: “Viewing Corrupted Memory” on page 108. This information is pre-
sented in a manner similar to such shell tools as od. Controls in this tab
specify how MemoryScape should display this information. For example, you
can choose hexadecimal, octal, and character. (The default is hexadecimal)
You can also change the number of bytes shown. The right area displays an
ASCII representation of this information. The Bytes area lets you specify how
many bytes are contained within each cell.

In this figure, notice that bytes are displayed using the same color as in the
selected block at the top of the figure.

• Orange indicates a corrupted guard block.

• Dark green indicates an allocated data block

• Light green indicates an uncorrupted guard block.

Now look at the data. When MemoryScape created a pre guard block, it used
its default setting, which set bytes to 0x77. However, the eighth byte in the
corrupted guard block has a value of 0x41. All other values are 0x77.

Notice also that the boundary between the data in the corrupted block and
the following block has two guard blocks: the following guard from one data
allocation and the preceding guard of a second.

When the program that generated this program was run, guard block notifi-
cation was set. This insured that execution was halted when the memory
block containing the guard block was deallocated. This is a good starting
point for trying to locate the cause of the problem.

111

Task 12: Saving and Restoring
Memory State Information
In many cases, obtaining data from an executing program doesn’t give you
the information you need. What you may really need is to examine a past
state or compare memory states over time. This task describes saving state
information and bringing it back into MemoryScape so that it can be
examined.

Before reading this task, you should be familiar with the following
information:

Locating Memory Problems,” on page 1
An overview of memory concepts and MemoryScape.

Task 1: “Getting Started” on page 61
How to start MemoryScape with an overview of the kinds of information
you can obtain.

Task 3: “Setting MemoryScape Options” on page 71
How to configure MemoryScape so that it performs the activities you
want it to perform.

Task 13: “Comparing Memory” on page 113
The procedure for comparing two memory states.

Topics in this task are:

• “Procedures for Exporting and Adding Memory Data” on page 111

• “Using Saved State Information” on page 111

• “Where to Go Next” on page 112

Procedures for Exporting and Adding Memory
Data
To save state information:

1. Select Export Memory Data, located on the left side of most reports.

2. Enter a file name into the dialog box.

If you are exporting a multiprocess program, MemoryScape places informa-
tion for each process in its own file. For example, if the file name you enter is
monte_carlo, MemoryScape appends a process number to each file so that
it writes files named monte_carlo0, monte_carlo1, and so on.

The procedure for adding saved information is similar to adding a program
to MemoryScape:

1. From the Home | Add Program screen, select Add Memory debug-
ging file.

2. Enter the name of the file containing the saved state information.

Using Saved State Information
You can use saved state information in two ways:

• In many cases, you’ll begin using saved state information in a Compare
Memory Report.

• You can use saved state information in exactly the same way as state
information for the currently executing program. That is, generate
reports from the saved state information in exactly the same way as you
would from an executing program.

112

MemoryScape saves a great deal of information in the saved state file. This
means that you can compare the saved state information against an execut-
ing program or against other saved and recalled state information. You can
also generate any report that you can generate from live state information.
For example, you can display a Leak Source report based on the saved state
information.

The sole difference between a live program and data from saved stated infor-

mation is that MemoryScape displays a disk icon next to the file’s name.

Where to Go Next
• For information on using saved state information in comparisons, see

Task 13: “Comparing Memory” on page 113.

• You can also save reports as HTML. See Task 14: “Saving Memory
Information as HTML” on page 116.

113

Task 13: Comparing Memory
Previous tasks have shown you how to locate explicit memory problems.
These problems are often the most obvious, even though they can be diffi-
cult to locate. A more difficult task is tracking down problems related to using
too much memory. For these problems, you need to understand how your
program is using memory over time.

Before reading this task, you should be familiar with the following
information:

Locating Memory Problems,” on page 1
An overview of memory concepts and MemoryScape.

Task 1: “Getting Started” on page 61
How to start MemoryScape with an overview of the kinds of information
you can obtain.

Task 12: “Saving and Restoring Memory State Information” on page 111
How to save state information to disk and read it back into MemoryScape.

Topics in this task are:

• “Overview” on page 113

• “Obtaining a Comparison” on page 113

• “Memory Comparison Report” on page 114

• “Where to Go Next” on page 115

Overview
You would compare memory states after you notice that your program is
using memory in a way that you don’t understand. For example, you are peri-
odically displaying memory usage charts and you notice something unusual.
Or, you see something unexpected on the Home | Summary screen’s Heap
Usage Monitor.

This graph shows that memory increases, then decreases slightly before
remaining steady. This could be what you expect. However, it could be that
you believe that your program should not have acquired so much memory.

Obtaining a Comparison
To create a comparison:

1. Stop your program while it is executing within the first plateau.

2. Save the memory state.

3. Run your program for a short time. Stop it at a later time.

4. Add the saved state back into MemoryScape by selecting Add memory
debugging file from Home | Add Program. On the next screen, spec-
ify the previously saved state file.

Figure 70: Heap Usage Monitor

114

5. Display the Memory Reports | Memory Comparisons screen. 6. Select the two processes being compared. Note that the saved state
has a small disk icon () next to it. Figure 71 shows part of the screen
containing controls for selecting the processes. The screen containing
information is also displayed.

Memory Comparison Report
Not unexpectedly, the information displayed in the Memory Comparison
Report closely resembles the information in other reports. The buttons in
the Data Source area control the kind of information being displayed, which

can be allocations, deallocations, leaks, or the hoard.

The comparison area displays the number of bytes allocated in each of the
processes, and the difference between these values. In some cases, you may
want to reverse the order in which MemoryScape compares information.

Figure 71: Memory Use Comparisons

115

That is, MemoryScape compares processes in the order in which you
selected the processes. Change this order by clicking the Reverse Diff

 button.

When you select a line in the table, MemoryScape displays the line in your
program associated with it. Depending on what is being displayed and your
program, these lines can differ. In many cases, however, they’re identical.

Where to Go Next
Now that you’ve seen comparisons, you will probably want to obtain more
information on using other MemoryScape reports. You’ll find a summary at
the beginning of this chapter (“Memory Tasks” on page 60).

116

Task 14: Saving Memory
Information as HTML

Figure 72: Saved HTML File

117

Saving memory state and bringing it back into MemoryScape is one way for
you to save memory state information. MemoryScape provides an alterna-
tive. You can save report information as an HTML file. (See Figure 72 for an
example.)

Before reading this task, you should be familiar with the following
information:

Locating Memory Problems,” on page 1
An overview of memory concepts and MemoryScape.

Task 1: “Getting Started” on page 61
How to start MemoryScape with an overview of the kinds of information
you can obtain.

Task 3: “Setting MemoryScape Options” on page 71
How to configure MemoryScape so that it performs the activities you
want it to perform.

Task 12: “Saving and Restoring Memory State Information” on page 111
How to save all memory data in a way that allows it to be brought back
into MemoryScape.

Topics in this task are:

• “Saving Report Information” on page 117

Saving Report Information
To save report information:

1. Select Save Report, which is on the left side of most report screens.

2. Type a filename in the displayed dialog box.

There are many advantages and one disadvantage to saving information as
HTML instead of exporting it. The disadvantage is that you need to decide
what reports you want to save. That is, MemoryScape writes a set of HTML
files for each report you want saved; if you don’t save a report, there’s no
method for deriving another report from this saved information.

On the other hand, there are a number of advantages. The most important is
that you can view the HTML report outside of MemoryScape in a browser.
Another advantage is that you can share this information with others no mat-
ter where they are located, and these people need not have a MemoryScape
license. One last advantage—and we’re sure you’ll have others—is that this
makes it really easy to compare what you’ve done over time so that you can
evaluate if you’re making progress in solving memory problems.

118

Task 15: Hoarding Deallocated
Memory
Hoarding is not an often-used feature. Its primary use is to prevent problems
in which memory is deallocated by one part of the program but another part
is using this memory, not knowing it is deallocated. For two examples of how
hoarding is used, see “Hoarding” on page 56.

Before reading this task, you should be familiar with the following
information:

Locating Memory Problems,” on page 1
An overview of memory concepts and MemoryScape.

Task 1: “Getting Started” on page 61
How to start MemoryScape with an overview of the kinds of information
you can obtain.

Task 3: “Setting MemoryScape Options” on page 71
How to configure MemoryScape so that it performs the activities you
want it to perform.

Task 4: “Controlling Program Execution” on page 82
How to start and stop program execution.

To enable memory hoarding, select Extreme from the Memory Debugging
Options screen. (described in Task 3: “Setting MemoryScape Options” on
page 71.) If you need to tune how MemoryScape hoards memory, select
Advanced Options. Figure 73 shows the portion of the options page where
you set hoarding options.

Hoarding is actually a very simple process. When your program deallocates
memory, MemoryScape stashes the deallocation request away. It also
records information on the size of the block that would have been deallo-
cated. And then it ignores the deallocation request.

Ignoring the deallocation request means that other parts of the program can
continue to access this valid memory instead of using data that may have
incorrect values. Said differently, the program can keep executing with the
correct information a while longer. This improves your chances of identifying
the location of the problem.

MemoryScape doesn’t ignore your program’s deallocations request indefi-
nitely. By default, MemoryScape hoards 32 requests. Also by default, it defers
only the deallocation of up to 256 KB of memory. You can, of course, change
either of these values by using MemoryScape options.

To hoard all deallocated memory, set the maximum KB and blocks to unlim-
ited by entering 0 in the hoarding control fields. To prevent or delay your
program from running out of memory when using this setting, use the
advanced option to set MemoryScape to automatically release hoarded
memory when available memory gets low.

You can also set a threshold for the hoard size so MemoryScape can warn
you when available memory is getting low. If the hoard size drops below the
threshold, MemoryScape halts execution and notifies you. You can then view
a Heap Status or Leak report to see where your memory is being allocated.

Figure 73: Hoard deallocated memory Option

119

Task 16: Painting Memory
Your program may be using memory either before it is initialized or after it is
deallocated. MemoryScape can help you identify these kinds of problems by
initializing allocated or deallocated memory to a bit pattern. This is called
painting. If you can recognize this bit pattern, you’ll be taking a large step
toward identifying the problem.

Before reading this task, you should be familiar with the following
information:

Locating Memory Problems,” on page 1
An overview of memory concepts and MemoryScape.

Task 1: “Getting Started” on page 61
How to start MemoryScape with an overview of the kinds of information
you can obtain.

Task 3: “Setting MemoryScape Options” on page 71
How to configure MemoryScape so that it performs the activities you
want it to perform.

Task 4: “Controlling Program Execution” on page 82
How to start and stop program execution.

To enable painting memory, select Extreme from the Memory Debugging
Options screen (described in Task 3: “Setting MemoryScape Options” on
page 71.) If you need to tune how MemoryScape paints memory, select
Advanced Options. Here is the portion of the options screen for setting paint-
ing options:

Here are some of the ways in which you use painting:

• If you paint memory and your application displays this memory, you will
have proof that you are using uninitialized or deallocated memory.

• Painting memory provides consistency for uninitialized memory in that
you should not experience situations where the program works for some
users and doesn’t for others.

• Painting memory will change your program’s behavior if it is not using
memory correctly. This may aid in identifying the problem. In addition, it
may correct the problem so that the program doesn’t appear to fail.

• Some painting patterns can force an error such as a crash to occur.
(Crashes during debugging sessions are useful, allowing you to identify
where problems are occurring.)

• After painting memory, your program can look for the pattern in order to
check if something was not initialized.

Figure 74: Paint memory option

120

Remote Access

Using Remote Display
Using the TotalView Remote Display client, you can start and then view
TotalView and MemoryScape as they execute on another system, so that they
need not be installed on your local machine.

Remote Display is currently bundled into all TotalView releases.

Supported platforms include:

• Linux x86-64

• Microsoft Windows

• Apple macOS Intel

No license is needed to run the Client, but TotalView running on any sup-
ported operating system must be a licensed version of TotalView 8.6 or
greater.

Both MemoryScape and TotalView use the same client, discussed in the Clas-
sic TotalView User Guide in the chapter “Accessing TotalView Remotely.” No
special configuration or use is required when using the client to access
MemoryScape.

121

Creating Programs for Memory Debugging

MemoryScape tries to handle the details involved in starting your program,
but differences in development and production environments may require
customizations outside MemoryScape defaults.

This chapter contains information you’ll need if our defaults do not meet
your need. Topics in this chapter are:

• “Compiling Programs” on page 122

• “Linking with the dbfork Library” on page 123

• “Ways to Start MemoryScape” on page 125

• “Attaching to Programs” on page 126

• “Setting Up MPI Debugging Sessions” on page 127

• “Linking Your Application with the Agent” on page 136

• “Using env to Insert the Agent” on page 139

• “Installing tvheap_mr.a on AIX” on page 140

• “Using MemoryScape in Selected Environments” on page 142

 Compiling Programs

122

Compiling Programs
The first step when preparing a program to load into MemoryScape is adding
your compiler’s -g debugging command-line option to generate symbol table
debugging information; for example:

cc -g -o executable source_program

You can also use MemoryScape on programs that you did not compile using
the -g option, or programs for which you do not have source code. However,
MemoryScape may not be able to provide source code information.

The following table presents some general considerations.

Compiler Option or
Library What It Does When to Use It

Debugging symbols
option (usually -g)

Generates debugging
information in the sym-
bol table.

Before debugging any
program with
MemoryScape.

Optimization option
(usually -O)

Rearranges code to opti-
mize your program’s
execution.

Some compilers won’t let
you use the -O option
and the -g option at the
same time.

Even if your compiler lets
you use the -O option,
don’t use it when debug-
ging your program, since
unexpected results often
occur.

After you finish debug-
ging your program.

Multiprocess program-
ming library (usually
dbfork)

Uses special versions of
the fork() and execve()

system calls.

In some cases, you need
to use the -lpthread
option.

For more information
about dbfork, see “Link-
ing with the dbfork
Library” on page 123.

Before debugging a
multiprocess program
that explicitly calls
fork() or execve().

.

 Linking with the dbfork Library

123

Linking with the dbfork Library
If your program uses the fork() and execve() system calls, and you want to
debug the child processes, you need to link programs with the dbfork library.

dbfork on IBM AIX on RS/6000 Systems
Add either the -dbfork or -ldbfork_64 argument to the command that you
use to link your programs. If you are compiling 32-bit code, use the following
arguments:

• /memscape_install_dir/lib/libdbfork.a \
-bkeepfile:/usr/totalview/rs6000/lib/libdbfork.a

• -L/memscape_install_dir/lib \
-ldbfork -bkeepfile:/usr/totalview/rs6000/lib/libdbfork.a

For example:
cc -o program program.c \
 -L/usr/totalview/rs6000/lib/ -ldbfork \
 -bkeepfile:/usr/totalview/rs6000/lib/libdbfork.a
If you are compiling 64-bit code, use the following arguments:

• /memscape_install_dir/lib/libdbfork_64.a \
-bkeepfile:/usr/totalview/rs6000/lib/libdbfork.a

• -L/memscape_install_dir/lib -ldbfork_64 \
-bkeepfile:/usr/totalviewrs6000//lib/libdbfork.a

For example:
cc -o program program.c \
 -L/usr/totalview/rs6000/lib -ldbfork \
 -bkeepfile:/usr/totalview/rs6000/lib/libdbfork.a
When you use gcc or g++, use the -Wl, -bkeepfile option instead of the -
bkeepfile option, which will pass the same option to the binder. For
example:
gcc -o program program.c \
 -L/usr/totalview/rs6000/lib -ldbfork -Wl, \
 -bkeepfile:/usr/totalview/rs6000/lib/libdbfork.a

Linking C++ Programs with dbfork

You cannot use the -bkeepfile binder option with the IBM xlC C++ compiler.
The compiler passes all binder options to an additional pass called munch,
which will not handle the -bkeepfile option.

To work around this problem, MemoryScape provides the C++ header file
libdbfork.h. You must include this file somewhere in your C++ program. This
forces the components of the dbfork library to be kept in your executable.
The file libdbfork.h is included only with the RS/6000 version of Memory-
Scape. This means that if you are creating a program that will run on more
than one platform, lace the include within an #ifdef statement’s range. For
example:
#ifdef _AIX
#include “/usr/totalview/include/libdbfork.h”
#endif
int main (int argc, char *argv[])
{
}

In this case, you would not use the -bkeepfile option and would instead link
your program using one of the following options:

• /usr/totalview/include/libdbfork.a

NOTE >>While you must link programs that use fork() and execve() with
the dbfork library so that MemoryScape can automatically
attach to them when your program creates them, programs
that you attach to need not be linked with this library.

 Linking with the dbfork Library

124

• -L/usr/totalview/include -ldbfork

dbfork and Linux or Mac OS X
Add one of the following arguments or command-line options to the com-
mand that you use to link your programs:

• -L/usr/totalview/platform/lib
or
-L/usr/totalview/platform/lib -ldbfork_64

where platform is one of the following: darwin-x86, linux-x86-64, linux-
arm64, or linux-powerle.

For example:
cc -o program program.c \
 -L/usr/totalview/linux-x86-64/lib -ldbfork_64

dbfork and SunOS 5 SPARC
Add one of the following command line arguments or options to the com-
mand that you use to link your programs:

• /opt/totalview/sun5/lib/libdbfork.a

• -L/opt/totalview/sun5/lib -ldbfork

For example:
cc -o program program.c \
 -L/opt/totalview/sun5/lib -ldbfork

As an alternative, you can set the LD_LIBRARY_PATH environment variable
and omit the -L option on the command line:

setenv LD_LIBRARY_PATH /opt/totalview/sun5/lib

 Ways to Start MemoryScape

125

Ways to Start MemoryScape
MemoryScape can debug programs that run in many different computing
environments and which use many different parallel processing modes and
systems. This section looks at few of the ways you can start MemoryScape.

In most cases, the command for starting MemoryScape looks like this:

memscape [executable [corefile]] [options]

where executable is the name of the executable file and corefile is the name
of the core file that you want to examine.

Your environment may require you to start MemoryScape in another way.
For example, if you are debugging an MPI program, you may need to invoke
MemoryScape on mpirun. For an example, see “Debugging an MPI Pro-
gram” on page 126 and several other discussions in this chapter.

The following examples show different ways of starting MemoryScape:

Starting MemoryScape

memscapeStarts MemoryScape without loading a program or core file. You now se-
lect Add new program or Add parallel program to load a program.

Starting MemoryScape and Naming a program

memscape executable
Starts MemoryScape and loads the executable program.

Starting MemoryScape from TotalView

From TotalView, select the Tools menu item from the Root Window or the
Debug menu item from the Process Window. Select the Open Memo-
ryScape option.At launch, MemoryScape tries to interpret the state of
TotalView and opens to the appropriate page, most likely the Home page.
You can select the Memory Debugging Options page to turn memory
debugging on or off, but if your program is running, you must kill it before
the settings take effect.

Using core files

memscape executable corefile
Starts MemoryScape and loads the executable program and the core-
file core file.

Passing arguments to the program

memscape executable -a args
Starts MemoryScape and passes all the arguments following the -a op-
tion to the executable program. When you use the -a option, you must
enter it as the last MemoryScape option on the command line.

If you don’t use the -a option and you want to add arguments after Mem-
oryScape loads your program, right click on the executable and select
Properties.

Debugging a program that runs on another computer

memscape executable -remote hostname_or_address[:port]
Starts MemoryScape on your local host and the TotalView Debugger
Server (tvdsvr) on a remote host. After MemoryScape begins executing,
it loads the program specified by executable for remote debugging. You
can specify a host name or a TCP/IP address. If you need to, you can also
enter the TCP/IP port number.

 Attaching to Programs

126

If MemoryScape fails to automatically load a remote executable, you may
need to disable autolaunching for this connection and manually start the
Debugger Server (tvdsvr). (Autolaunching is the process of automatically
launching tvdsvr processes.) You can disable autolaunching by adding
the hostname:portnumber suffix to the name you type in the Host
field of the Add new program or Add parallel program screens. As al-
ways, the portnumber is the TCP/IP port number on which our server is
communicating with MemoryScape. For more information on how to dis-
able autolaunching, see “Starting the TotalView Server Manually” in the
Classic TotalView User Guide.

Debugging an MPI Program

memscape executable
(method 1) In many cases, you start an MPI program in much the same
way as you would any other program, but you need to set its properties.
One way is to select the executable’s name from within MemoryScape,
right-click for the context menu, and choose Properties. In the displayed
dialog box, select the MPI version, in addition to other options.

mpirun -np count -tv executable
(method 2) The MPI mpirun command starts the MemoryScape pointed
to by the TOTALVIEW environment variable. MemoryScape then starts
your program. This program will run using count processes.

Attaching to Programs
If a program you’re testing is using too much memory, you can attach to it
while it is running. You can attach to single and multiprocess programs, and
these programs can be running remotely.

To attach to a process, select the Attach to running program item from the
Home | Add Program page.

If you want MemoryScape to automatically attach to programs that use
fork() and execve(), you must use the MemoryScape dbfork library. How-
ever, programs that you manually attach to need not be linked with this
library.

NOTE >>MemoryScape requires that all programs use the MemoryScape
agent. In most cases, it does this behind the scenes before the
program begins executing. However, it cannot do this for an
already executing program or for a core file. So, just attaching to
an already running program will not provide the information
you need as the agent won’t be used. In some cases, you may
want to add it by starting the program using the shell env com-
mand. However, the best alternative is to link the MemoryScape
agent. For details, see “Linking Your Application with the
Agent” on page 136.

NOTE >>When you exit from MemoryScape, it kills all programs and pro-
cesses that it started. However, programs and processes that
were executing before you brought them under Memory-
Scape’s control continue to execute.

 Setting Up MPI Debugging Sessions

127

Setting Up MPI Debugging
Sessions
This section explains how to set up MemoryScape MPI debugging sessions.
This section includes:

• “Debugging MPI Programs” on page 127

• “Debugging MPICH Applications” on page 129

• “Debugging IBM MPI Parallel Environment (PE) Applications” on
page 131

• “Debugging LAM/MPI Applications” on page 133

• “Debugging QSW RMS Applications” on page 134

• “Debugging Sun MPI Applications” on page 134

Debugging MPI Programs
In many cases, the way in which you invoke an MPI program within Memory-
Scape control differs little from discipline to discipline. If you invoke
MemoryScape from the command line without an argument, MemoryScape
displays its Add Programs to Your MemoryScape Session screen. Select
Add parallel program, and then enter the required information.

 Setting Up MPI Debugging Sessions

128

For example, you should select the Parallel system, the number of Tasks,
and possibly Nodes. If there are additional arguments to send to the starter
process, enter them in the MPI launcher arguments area. Note that these
arguments are those sent to a starter process such as mpirun or poe; argu-
ments sent to your program are instead entered in the Command line
arguments area. If you need to add environment variables, enter them within
the Envrionment variables tab.

In most cases, MemoryScape remembers your entries between invocations
of MemoryScape and pre-populates the relevant fields.

Figure 75: Adding a Parallel program

 Setting Up MPI Debugging Sessions

129

Debugging MPICH Applications

To examine Message Passing Interface/Chameleon Standard (MPICH) appli-
cations, you must use MPICH version 1.2.5 or later on a homogenous
collection of computers. If you need a copy of MPICH, you can obtain it at no
cost from Argonne National Laboratory at https:// www.mcs.anl.gov/mpi. (We
strongly urge that you use a later version of MPICH.)

The MPICH library should use the ch_p4, ch_p4mpd, ch_shmem, ch_lfsh-
mem, or ch_mpl devices.

• For networks of workstations, the default MPICH library is ch_p4.

• For shared-memory SMP computers, use ch_shmem.

• On an IBM SP computer, use the ch_mpl device.

The MPICH source distribution includes all these devices. Choose the device
that best fits your environment when you configure and build MPICH.

For more information, see:

• Starting MemoryScape on an MPICH Job, below

• “Attaching to an MPICH Job” on page 130

• “Using MPICH P4 procgroup Files” on page 130

Starting MemoryScape on an MPICH Job

Before you can bring an MPICH job under MemoryScape’s control, both
MemoryScape and the Debugger Server must be in your path, performed
through either a login or shell startup script.

The official syntax for starting MemoryScape is as follows:

mpirun -tv [other_mpich-args] program [program-args]

For example:
mpirun -tv -np 4 sendrecv

The -tv option tells mpirun that it should obtain information from the
TOTALVIEW environment variable.

For example, the following is the C shell command that sets the TOTALVIEW
environment variable so that mpirun passes the -verbosity option to
MemoryScape:
setenv TOTALVIEW "memscape -verbosity 1"

In this example, the memscape command must be in your path. If it isn’t,
you need to specify either an absolute or relative path to the memscape
command. MemoryScape begins by starting the first process of your job, the
master process, under its control.

On the IBM SP computer with the ch_mpl device, mpirun uses the poe com-
mand to start an MPI job. While you still must use the MPICH mpirun (and its
-tv option) command to start an MPICH job, the way you start MPICH differs.
For details on using MemoryScape with poe, see “Starting MemoryScape on
a PE Program” on page 132.

NOTE >>In many cases, you can bypass the procedure described in this
section. For more information, see “Debugging MPI Programs”
on page 127.

https://www.mcs.anl.gov

 Setting Up MPI Debugging Sessions

130

Starting MemoryScape using the ch_p4mpd device is similar to starting
MemoryScape using poe on an IBM computer or other methods you might
use on Sun platforms. In general, you start MemoryScape using the mems-
cape command, with the following syntax;

memscape mpirun [memscape_args] -a [mpich-args] \
program [program-args]

As your program executes, MemoryScape automatically acquires the pro-
cesses that are part of your parallel job as your program creates them.
MemoryScape automatically copies memory configuration information to the
slave processes.

Attaching to an MPICH Job

You can attach to an MPICH application even if it was not started under
MemoryScape’s control. These processes, however, must have previously
been linked with the MemoryScape agent. See “Linking Your Application
with the Agent” on page 136.

To attach to an MPICH application:

1. Start MemoryScape.

Select Attach to running program from the Add Programs to Your
MemoryScape Session screen. You are now shown processes that are
not yet owned.

2. Attach to the first MPICH process in your workstation cluster by select-
ing it, then clicking Next.

3. On an IBM SP with the ch_mpi device, attach to the poe process that
started your job. For details, see “Starting MemoryScape on a PE Pro-
gram” on page 132.

Normally, the first MPICH process is the highest process with the correct
program name in the process list. Other instances of the same executable
can be:

— The p4 listener processes if MPICH was configured with
ch_p4.

— Additional slave processes if MPICH was configured with
ch_shmem or ch_lfshmem.

— Additional slave processes if MPICH was configured with
ch_p4 and has a file that places multiple processes on
the same computer.

4. After you attach to your program’s processes, you are prompted to also
attach to slave MPICH processes. To do so, press Return or choose Yes.
If you choose Yes, MemoryScape starts the server processes and
acquires all MPICH processes.

In some situations, the processes you expect to see might not exist (for
example, they may crash or exit). MemoryScape acquires all the processes it
can and then warns you if it can not attach to some of them. If you attempt to
dive into a process that no longer exists (for example, using a message
queue display), MemoryScape reports hat the process no longer exists.

Using MPICH P4 procgroup Files

If you’re using MPICH with a P4 procgroup file (by using the -p4pg option),
you must use the same absolute path name in your procgroup file and on
the mpirun command line. For example, if your procgroup file contains a
different path name than that used in the mpirun command, even though
this name resolves to the same executable, MemoryScape assumes that it is
a different executable, which causes debugging problems.

 Setting Up MPI Debugging Sessions

131

The following example uses the same absolute path name on the Memory-
Scape command line and in the procgroup file:
% cat p4group
local 1 /users/smith/mympichexe
bigiron 2 /users/smith/mympichexe
% mpirun -p4pg p4group -tv /users/smith/mympichexe

In this example, MemoryScape does the following:

1. Reads the symbols from mympichexe only once.

2. Places MPICH processes in the same MemoryScape share group.

3. Names the processes mypichexe.0, mympichexe.1, mympichexe.2,
and mympichexe.3.

If MemoryScape assigns names such as mympichexe<mympichexe>.0, a
problem occurred and you need to compare the contents of your procgroup
file and mpirun command line.

Starting MPI Issues

If you can’t successfully start MemoryScape on MPI programs, check the
following:

• Can you successfully start MPICH programs without MemoryScape?

The MPICH code contains some useful scripts that help verify that you can
start remote processes on all computers in your computers file. (See tst-
machines in mpich/util.)

• Does the TotalView Server (tvdsvr) fail to start?

Remember that MemoryScape uses ssh -x to start the server, and that
this command doesn’t pass your current environment to remotely started
processes.

• Under some circumstances, MPICH kills MemoryScape with the SIGINT
signal. You can see this behavior when you use the Kill command as the
first step in restarting an MPICH job.

Debugging IBM MPI Parallel Environment (PE)
Applications

You can debug IBM MPI Parallel Environment (PE) applications on the IBM
RS/6000 and SP platforms.

To take advantage of MemoryScape’s ability to automatically acquire pro-
cesses, you must be using release 3.1 or later of the Parallel Environment for
AIX.

Topics in this section are:

• “Using Switch-Based Communications” on page 132

• “Performing a Remote Login” on page 132

• “Starting MemoryScape on a PE Program” on page 132

• “Attaching to a PE Job” on page 133

NOTE >>In many cases, you can bypass the procedure described in this
section. For more information, see “Debugging MPI Programs”
on page 127.

NOTE >>In many cases, you can bypass the procedure described in this
section. For more information, see “Debugging MPI Programs”
on page 127.

 Setting Up MPI Debugging Sessions

132

The following sections describe what you must do before MemoryScape can
debug a PE application.

Using Switch-Based Communications

If you’re using switch-based communications (either IP over the switch or user
space) on an SP computer, you must configure your PE debugging session so
that MemoryScape can use IP over the switch for communicating with the
TotalView Server (tvdsvr). Do this by setting the -adapter_use option to
shared and the -cpu_use option to multiple, as follows:

• If you’re using a PE host file, add shared multiple after all host names or
pool IDs in the host file.

• Always use the following arguments on the poe command line:

-adapter_use shared -cpu_use multiple

If you don’t want to set these arguments on the poe command line, set the
following environment variables before starting poe:
setenv MP_ADAPTER_USE shared
setenv MP_CPU_USE multiple

When using IP over the switch, the default is usually shared adapter use and
multiple cpu use; we recommend that you set them explicitly using one of
these techniques. You must run MemoryScape on an SP or SP2 node. Since
MemoryScape will be using IP over the switch in this case, you cannot run
MemoryScape on an RS/6000 workstation.

Performing a Remote Login

You must be able to perform a remote login using the ssh -x command. You
also need to enable remote logins by adding the host name of the remote
node to the /etc/hosts.equiv file or to your .rhosts file.

When the program is using switch-based communications, MemoryScape
tries to start the TotalView Server by using the ssh -x command with the
switch host name of the node.

Setting Timeouts

If you receive communications timeouts, you can set the value of the MP_-
TIMEOUT environment variable; for example:
setenv MP_TIMEOUT 1200

If this variable isn’t set, the default timeout value is 600 seconds.

Starting MemoryScape on a PE Program

The following is the syntax for running Parallel Environment (PE) programs
from the command line:

program [arguments] [pe_arguments]

You can also use the poe command to run programs as follows:

poe program [arguments] [pe_arguments]

If, however, you start MemoryScape on a PE application, you must start poe
as MemoryScape’s target using the following syntax:

memscape poe -a program [arguments] [PE_arguments]

For example:
memscape poe -a sendrecv 500 -rmpool 1

NOTE >>You must link the MemoryScape agent into your IBM MPI Parallel
Environment program before running it. For details, see “Install-
ing tvheap_mr.a on AIX” on page 140.

 Setting Up MPI Debugging Sessions

133

You should start all of your parallel tasks using the Run command.

Attaching to a PE Job

To take full advantage of MemoryScape’s poe-specific automation, you need
to attach to poe itself, and let MemoryScape automatically acquire the poe
processes on all its nodes. In this way, MemoryScape acquires the processes
you want to debug.

Attaching from a Node Running poe

To attach MemoryScape to poe from the node running poe:

1. Start MemoryScape in the directory of the debug target.

If you can’t start MemoryScape in the debug target directory, you can start
MemoryScape by editing the Debugger Server (tvdsvr) command line
before attaching to poe.

2. In the Home | Add Program screen, select Attach to running pro-
gram, then find the poe process list, select it, and hit the Next button.
When necessary, MemoryScape launches tvdsvr processes.

3. Locate the process you want to debug and dive on it.

If your source code files are not displayed in the Source Pane, you might not
have told MemoryScape where these files reside. You can fix this by invoking
the File > Search Path command to add directories to your search path.

Attaching from a Node Not Running poe

The procedure for attaching MemoryScape to poe from a node that is not
running poe is essentially the same as the procedure for attaching from a
node that is running poe.

To place poe in this list:

1. Connect MemoryScape to the startup node.

2. From the Home | Add Programs to Your MemoryScape Session page,
select Attach to running program.

3. Look for the process named poe and continue as if attaching from a
node that is running poe.

Debugging LAM/MPI Applications

You debug a LAM/MPI program in a similar way to how you debug most MPI
programs. Use the following syntax if MemoryScape is in your path:

mpirun -tv mpirun args prog prog_args

As an alternative, you can invoke MemoryScape on mpirun:

memscape mpirun -a prog prog_args

NOTE >>In many cases, you can bypass the procedure described in this
section. For more information, see “Debugging MPI Programs”
on page 127.

 Setting Up MPI Debugging Sessions

134

Debugging QSW RMS Applications

Starting MemoryScape on an RMS Job

To start a parallel job under MemoryScape’s control, use MemoryScape as if
you were debugging prun:

memscape prun -a prun-command-line

MemoryScape starts and shows you the machine code for RMS prun. Since
you’re not usually interested in debugging this code, use the Run command
to let the program run.

The RMS prun command executes and starts all MPI processes.

Attaching to an RMS Job

To attach to a running RMS job, attach to the RMS prun process that started
the job.

You attach to the prun process the same way you attach to other processes.

Debugging Sun MPI Applications

MemoryScape can debug a Sun MPI program and display Sun MPI message
queues. This section describes how to perform job startup and job attach
operations.

To start a Sun MPI application, use the following command:

memscape mprun [totalview_args] -a [mpi_args]

For example:
memscape mprun -g blue -a -np 4 /usr/bin/mpi/conn.x

When the MemoryScape Window appears, select the Go button.

Attaching to a Sun MPI Job

To attach to an already running mprun job:

1. Find the host name and process identifier (PID) of the mprun job by typ-
ing mpps -b. For more information, see the mpps(1M) manual page.

The following is sample output from this command:
JOBNAME MPRUN_PID MPRUN_HOST
cre.99 12345 hpc-u2-9
cre.100 12601 hpc-u2-8

2. Go to Attach to Running Program and look for the process.

NOTE >>In many cases, you can bypass the procedure described in this
section. For more information, see “Debugging MPI Programs”
on page 127.

NOTE >>In many cases, you can bypass the procedure described in this
section. For more information, see “Debugging MPI Programs”
on page 127.

 Setting Up MPI Debugging Sessions

135

3. If MemoryScape is running on a different node than the mprun job,
enter the host name in the Remote Host field.

NOTE >>You must link the MemoryScape agent into your Sun MPI Parallel
Environment program before running it. For details, see “Link-
ing Your Application with the Agent” on page 136.

 Linking Your Application with the Agent

136

Linking Your Application with
the Agent
MemoryScape puts its heap agent between your program and its heap
library which allows the agent to intercept the calls that your program makes
to this library. After it intercepts the call, it checks the call for errors and then
sends it on to the library so that it can be processed. The MemoryScape
agent does not replace standard memory functions; it just monitors what
they do. For more information, see “Behind the Scenes” on page 8.

In most cases, MemoryScape arranges for the heap agent to be loaded auto-
matically when it starts your program. In some cases, however, special steps
must be taken to ensure the agent loads. One example is when you are start-
ing an MPI program using a launcher that does not propagate environment
variables. (If you start your MPI program in MemoryScape using the Add Par-
allel Program page, MemoryScape propagates the information for you.)
Another is when you want to start your program outside, or independently
of, TotalView, and want to attach to the program later after it has started.

There are two ways you can arrange for the heap agent to be loaded:

• Link the application with the agent, as described in this section.

• Request that the heap agent be preloaded by setting the runtime
loader's preloading environment variable. See “Using env to Insert the
Agent” on page 139.

Here is some important platform-specific information:

• On AIX, the malloc replacement code and heap agent application must
be in directories searched by the dynamic loader. If they are not in any of
the standard directories (you can check with your system administrator),
you can set LIBPATH to search these directories when you run the
program. Another option is to add the directories to the program's list of
search directories when you link the program. To do this, use the -L
option as described in the table below. If you are in doubt about the
directories being searched, you can obtain a list of the searched
directories with dump -Hv <program-name>.

For additional requirements with AIX, see “Installing tvheap_mr.a on AIX”
on page 140.

• On Cray, TotalView supports both static and dynamic linking. See the
table below for the link lines you need to use.

• On Apple Mac OSX, you cannot link the agent into your program.

The following table lists additional command-line linker options that you
must use when you link your program:

Platform Compiler Binary Interface Additional linker options

Cray XT, XE, XK CLE (dynamic) - 64 -dynamic -L<path> -ltvheap_64 -Wl,-rpath,<path>
Cray XT, XE, XK CLE (static) - 64 -L<path> -ltvheap_cnl
IBM RS/6000 (all) IBM/GCC 32/64 -L<path_mr> -L<path>
AIX 5 IBM/GCC 32 -L<path_mr> -L<path> <path>/aix_malloctype.o

 Linking Your Application with the Agent

137

1 On Ubuntu platforms, if the link line fails to start MemoryScape, try add-
ing the additional flag -Wl,-no-as-needed. This flag should occur be-
fore the linking of tvheap, so on 64-bit platforms the link line would be:
-L<path> -Wl,-no-as-needed -ltvheap_64 -Wl,-rpath,<path>

64 -L<path_mr> -L<path> <path>/aix_malloctype64_5.o

Linux x86-64 1 GCC/Intel/PGI 32 -L<path> -ltvheap -Wl,-rpath,<path>

64 -L<path> -ltvheap_64 -Wl,-rpath,<path>
Linux PowerLE GCC 64 -L<path> -ltvheap_64 -Wl,-rpath,<path>
Linux ARM64 GCC 64 -L<path> -ltvheap_64 -Wl,-rpath,<path>

Sun Sun/Apogee 32 -L<path> -ltvheap -R <path>
Sun 64 -L<path> -ltvheap_64 -R <path>
GCC 32 -L<path> -ltvheap -Wl,-R,<path>

64 -L<path> -ltvheap_64 -Wl,-R,<path>

Platform Compiler Binary Interface Additional linker options

 Linking Your Application with the Agent

138

The following list describes the options in this table:

<path>
The absolute path to the agent in the MemoryScape installation hierar-
chy. More precisely, this directory is:

<installdir>/toolworks/memoryscape.<version>/
<platform>/lib

<installdir>

The installation base directory name.

<version>

The MemoryScape version number.

<platform>

The platform tag.

<path_mr>
The absolute path of the malloc replacement library. This value is deter-
mined by the person who installs the MemoryScape malloc replacement
library.

NOTE >>The heap agent library path can be hard to determine. If you
have access to the command line interface (CLI), you can use
the following command to print out its path:

 puts $TV::hia_local_dir

 Using env to Insert the Agent

139

Using env to Insert the Agent
When MemoryScape attaches to a process that is already running, the agent
must already be associated with it. You can do this in two ways:

• Manually link the agent as described in previous sections.

• Start the program using env (see man env on your system). This pushes
the agent into your program.

The variables required by each platform are shown in the following table. The
placeholder <hia_dir> represents the directory in which the agent is found.
See the previous section for how to determine this location.

NOTE >>Preloading cannot be used with Cray. For information on pre-
loading with Cray, see the earlier section Linking Your Applica-
tion with the Agent.

Platform Variable

Apple Mac OS X DYLD_INSERT_LIBRARIES=<hia_dir>/libtvheap.dylib

Note: See “Mac OS” on page 143 for detail on how this
environment variable works.

IBM AIX MALLOCTYPE=user:tvheap_mr.a

If you are already using MALLOCTYPE for another pur-
pose, reassign its value to the variable
TVHEAP_MALLOCTYPE and assign MALLOCTYPE as
above; when the agent starts it will correctly pass on
the options.

Linux

32-bit LD_PRELOAD=<hia_dir>/libtvheap.so

64-bit LD_PRELOAD=<hia_dir>/libtvheap_64.so

Sun

32-bit generic LD_PRELOAD=<hia_dir>/libtvheap.so

32-bit specific LD_PRELOAD_32=<hia_dir>/libtvheap.so

64-bit generic LD_PRELOAD=<hia_dir>/libtvheap_64.so

64-bit specific LD_PRELOAD_64=<hia_dir>/libtvheap_64.so

If the agent is the only library you are preloading, use
the generic variable. Otherwise, use whichever variable
was used for the other preloaded libraries.

 Installing tvheap_mr.a on AIX

140

Installing tvheap_mr.a on AIX

You must install the tvheap_mr.a library on each node on which you plan to
run the MemoryScape agent. The aix_install_ tvheap_mr.sh script con-
tains most of the required setup, and is located in this directory:

toolworks/totalview.version/rs6000/lib/

For example, after you become root, enter the following commands:
cd toolworks/memscape.1.0.0-0/rs6000/lib
mkdir /usr/local/tvheap_mr \
 ./aix_install_tvheap_mr.sh ./tvheap_mr.tar \
 /usr/local/tvheap_mr

Use poe to create tvheap_mr.a on multiple nodes.

The pathname for the tvheap_mr.a library must be the same on each node.
This means that you cannot install this library on a shared file system.
Instead, you must install it on a file system that is private to the node. For
example, because /usr/local is usually accessible only from the node on
which it is installed, you might want to install it there.

If this malloc replacement library changes (which is infrequent) you’ll need to
rerun this procedure. Any change will be noted among a release’s new
features.

LIBPATH and Linking
This section discusses compiling and linking your AIX programs. The following
command adds path_mr and path to your program’s libpath:
xlc -Lpath_mr -Lpath -o a.out foo.o

When malloc() dynamically loads tvheap_mr.a, it should find the library in
path_mr. When tvheap_mr.a dynamically loads tvheap.a, it should find it in
path.

The AIX linker supports relinking executables. This means that you can make
an already complete application ready for the MemoryScape agent; for
example:
cc a.out -Lpath_mr -Lpath -o a.out.new

Here's an example that does not link in the heap replacement library.
Instead, it allows you to dynamically set MALLOCTYPE:
xlC -q32 -g \
 -L/usr/local/tvheap_mr \
 -L/home/memscape/interposition/lib prog.o -o prog

This next example shows how a program can be set up to access the Memo-
ryScape agent by linking in the aix_malloctype.o module:
xlc -q32 -g \
 -L/usr/local/tvheap_mr \
 -L/home/memscape/interposition/lib prog.o \
 /home/memscape/interposition/lib/aix_malloctype.o \
 -o prog

NOTE >>Installing tvheap_mr.a on AIX requires that the system have the
bos.adt.syscalls System Calls Application Toolkit page installed.

NOTE >>The tvheap_mr.a library depends heavily on the exact version of
libc.a that is installed on a node. If libc.a changes, you must rec-
reate tvheap_mr.a by re-executing the aix_install_tvheap_mr.sh
script.

 Installing tvheap_mr.a on AIX

141

You can check that the paths made it into the executable by running the
dump command; for example:
% dump -Xany -Hv tx_memdebug_hello

 tx_memdebug_hello:

 Loader Section
 Loader Header Information
 VERSION# #SYMtableENT #RELOCent LENidSTR
 0x00000001 0x0000001f 0x00000040 0x000000d3

 #IMPfilID OFFidSTR LENstrTBL OFFstrTBL
 0x00000005 0x00000608 0x00000080 0x000006db

 Import File Strings
 INDEX PATH BASE MEMBER
 0 /.../lib:/usr/.../lib:/usr/lib:/lib
 1 libc.a shr.o
 2 libC.a shr.o
 3 libpthreads.a shr_comm.o
 4 libpthreads.a shr_xpg5.o

Index 0 in the Import File Strings section shows the search path the run-
time loader uses when it dynamically loads a library. Some systems
propagate the preload library environment to the processes they will run;
others, do not. If they do not, you need to manually link them with the
tvheap library.

In some circumstances, you might want to link your program instead of set-
ting the MALLOCTYPE environment variable. If you set the MALLOCTYPE
environment variable for your program and it uses fork()/exec() a program
that is not linked with the agent, your program will terminate because it fails
to find malloc().

 Using MemoryScape in Selected Environments

142

Using MemoryScape in
Selected Environments
This topic describes using the Memory Debugger within various environ-
ments. The sections within this topic are:

• MPICH

• IBM PE

• RMS MPI

• Mac OS

• Linux

MPICH
Here's how to use MemoryScape with MPICH MPI codes. Rogue Wave Soft-
ware has tested this only on Linux x86-64.

1. You must link your parallel application with the MemoryScape agent as
described “LIBPATH and Linking” on page 140. On most Linux x86-64
systems, you’ll type:
mpicc -g test.o -o test -Lpath \
 -ltvheap -Wl,-rpath,path

2. Start MemoryScape using the -tv command-line option to the mpirun
script in the usual way. For example:
mpirun -tv mpirun-args test args

MemoryScape will start up on the rank 0 process.

3. If you need to configure MemoryScape, you should do it now.

4. Run the rank 0 process.

IBM PE
Here's how to use MemoryScape with IBM PE MPI codes:

1. You must prepare your parallel application to use the MemoryScape
agent in “LIBPATH and Linking” on page 140 and in “Installing
tvheap_mr.a on AIX” on page 140. Here is an example that usually
works:
mpcc_r -g test.o -o test -Lpath_mr -Lpath \

 path/aix_malloctype.o
“Installing tvheap_mr.a on AIX” on page 140 contains additional informa-
tion.

2. Start MemoryScape on poe as usual:
memscape poe -a test args

Because tvheap_mr.a is not in poe’s LIBPATH, enabling MemoryScape upon
the poe process will cause problems because poe will not be able to locate
the tvheap_mr.a malloc replacement library.

3. If you need to configure MemoryScape, you should do it now.

4. Run the poe process.

RMS MPI
Here's how to use MemoryScape with Quadrics RMS MPI codes. Rogue Wave
Software has tested this only on Linux x86-64.

 Using MemoryScape in Selected Environments

143

1. There is no need to link the application with MemoryScape because prun
propagates environment variables to the rank processes. However, if
you’d like to link the application with the agent, you can.

2. Start MemoryScape on prun. For example:
memscape prun -a prun-args test args

3. If you need to configure MemoryScape, you should do it now.

4. Run the prun process.

Mac OS
In most circumstances, memory debugging works seamlessly on the Mac OS.

From 10.11 El Capitan and onwards, however, the Mac OS introduced some
changes that can affect some programs when memory debugging. While
these should not affect how your program runs, in some rare cases you may
want to fine-tune how the HIA behaves.

Background

In the Mac OS environment, interposition works only for preloaded DLLs,
meaning that the Heap Interposition Agent (HIA) can only be preloaded
rather than linked with the target as in some other operating systems. (See
“Behind the Scenes” on page 8 for more information on interposition and
the HIA.)

The HIA makes sure that any environment variables related to preloading are
correctly propagated if your program calls execve() or system(). The
required Mac OS environment variable is DYLD_INSERT_LIBRARIES.

For all Mac OS releases from El Capitan onwards, however, a new feature Sys-
tem Integrity Protection (SIP) implemented a protocol that disallows passing
DYLD_INSERT_LIBRARIES to a protected program or a program that resides in
a protected directory. Calls to system() are affected because it is defined as
invoking /bin/sh, which is in a SIP-protected directory.

Calls to system() on Mac OS

To work around the Mac OS SIP feature, for every system() call, the HIA cop-
ies bin/sh to a temporary directory (in /tmp) and arranges for the copy to be
used so that DYLD_INSERT_LIBRARIES is not filtered out during the call. Once
the child process has completed, the parent deletes the temporary directory.

This is the default behavior. To modify this, enable the environment variable
TV_MACOS_SYSTEM.

Setting the Environment Variable TV_MACOS_SYSTEM

The TV_MACOS_SYSTEM environment variable allows customization of
memory debugging behavior for Mac OS programs that call system(), and
includes the following options:

pass_through=boolean
If true, the call to system () is passed through to the underlying imple-
mentation.

The default is false, in which case the HIA controls the call to system() as
described in “Calls to system() on Mac OS” on page 143. Setting this
option to true may be useful if you have disabled SIP.

Example: "TV_MACOS_SYSTEM=pass_through=true"

shell=<pathname>
Defines the shell for the HIA to use instead of the default bin/sh.

 Using MemoryScape in Selected Environments

144

If defined, be sure that the SIP does not control access to this shell so that
the HIA has access to it. Note that the named shell is not deleted after the
return from system().

This setting may be useful to avoid any potential performance issues
caused by copying the shell for each system() call., and then deleting it
later.

Be aware, however, that using a previously stashed copy of bin/sh may
require some maintenance, since the copy will not be updated when the
operating system is updated.

The pathname must not contain commas or whitespace characters.

Example: "TV_MACOS_SYSTEM=shell=/path/to/some/copy/of/
bin/sh"

tmpdir=<pathname>
Defines a temporary directory where the HIA will copy the shell (given the
default setting of the option pass_through=false).

The HIA does not create the directory, assuming that it exists already. The
HIA deletes the copy of the shell after processing is complete, but does
not remove the directory.

If not set, the HIA creates a temporary directory in /tmp, which it removes
after the call to system () completes.

Example: "TV_MACOS_SYSTEM=tmpdir=/path/to/some/direc-
tory"

Linux

dlopen and RTLD_DEEPBIND

In most circumstances, memory debugging works seamlessly with programs
that call dlopen to dynamically load shared objects (DSOs).

However, the Linux implementation of dlopen accepts RTLD_DEEPBIND in
the flags/mode argument. RTLD_DEEPBIND affects how undefined refer-
ences in a DSO are bound. By default, when RTLD_DEEPBIND is not set, the
dynamic linker first looks up any symbols needed by a newly-loaded DSO in
the global scope.

RTLD_DEEPBIND modifies this behavior. When set, the dynamic linker
places the lookup scope of the DSO ahead of the global scope. This means
that the dynamic linker seeks to bind any undefined references in the DSO to
definitions in the DSO, or any of the DSOs on which it depends. Only after
these have been searched and a symbol not found is the global scope
examined.

RTLD_DEEPBIND can affect memory debugging because, in some circum-
stances, references to all or part of the heap manager interface in a DSO can
become bound to definitions in the standard library directly, rather than to
those in the HIA. As a result, the HIA may not see all the traffic between the
program and heap manager. If this occurs, the information the HIA is able to
collect for TotalView will be incomplete, reducing its usefulness. In some cir-
cumstances, memory debugging may even fail.

How the HIA Handles RTLD_DEEPBIND

The HIA deals with the challenges posed by RTLD_DEEPBIND by intercepting
calls to dlopen. If the program specifies RTLD_DEEPBIND, the HIA inserts
itself as one of the to-be-loaded DSO's dependents. It does this by creating a

 Using MemoryScape in Selected Environments

145

new ELF wrapper file that lists the HIA and the DSO the program wants to
dlopen as needed files. Instead of opening the DSO the program named, the
HIA dlopens the new wrapper DSO it constructed. Since the DSO given by
the program code is listed as a needed file, it too is opened.

As far as the program is concerned, the dlopen behaves as it would in the
absence of the HIA. After the call to dlopen, the HIA cleans up and deletes
the wrapper DSO that it created.

Modifying How the HIA Handles RTLD_DEEPBIND

The basic behavior described in How the HIA Handles RTLD_DEEPBIND can
be modified by setting the TVHEAP_DEEPBIND environment variable. The
following comma-separated settings are supported options:

pass_through=boolean
If true, the HIA does no special processing to handle RTLD_DEEPBIND.
It does not create the ELF wrapper, and instead passes the operation
through to the standard dlopen.

The default is false, in which case the HIA takes the steps described in
How the HIA Handles RTLD_DEEPBIND.

Example: "TVHEAP_DEEPBIND=pass_through=true"

keep_wrapper=boolean
If true, the HIA does not delete the ELF wrapper it creates after it has
been used. The default is false, in which case the HIA deletes the ELF
wrapper after it dlopens it.

Example: "TVHEAP_DEEPBIND=keep_wrapper=true"

tmpdir=<directory_name>
If defined, the HIA creates the ELF wrapper it generates in the directory
specified by the tmpdir setting. The default is to use the setting of the
environment variable TMPDIR. If TMPDIR is not defined, the ELF wrap-
per is created in /tmp.

146

MemoryScape Scripting

You can obtain information from MemoryScape by executing it in batch
mode using the memscript command. Batch mode requires the use of com-
mand-line options, like so:

memscript command_line_options

display_specifiers Command-
Line Option
The -display_specifiers command-line option controls how MemoryScape
writes information to the log file.

-display_specifiers “list_item”
Specifies one or more items that can be added or excluded from the log
file. Separate items with a comma.

list_item values are described in the following table. The word no in front of
item suppresses its display.

lItem Controls display of ...

[no]show_allocator The allocator for the address space

[no]show_backtrace The backtrace for memory blocks

[no]show_backtrace_id The backtrace ID for memory blocks

[no]show_block_address The start and end addresses for a memory
block

[no]show_flags Memory block flags

[no]show_guard_id The guard ID for memory blocks

[no]show_guard_settings The guard settings for memory blocks

[no]show_image The process/library associated with a
backtrace frame

[no]show_owner The owner of the allocation

[no]show_pc The backtrace frame PC

[no]show_pid The process PID

[no]show_red_zones_set-
tings

The Red Zone entries for allocations and
deallocations in the entire address space

lItem Controls display of ...

 event_action Command-Line Option

147

event_action Command-Line
Option
The -event_action command-line option is the most complex of the com-
mand line options. Its format is as follows:

-event_action “event=action list”
Specifies one or more actions that the script should perform if an event
occurs. The “event=action list” consists of comma-separated set
event=action pairs. For example:

"alloc_null=save_memory_debugging_file, \
 dealloc_notification=list_allocations"

event can be:

Event Description

addr_not_at_start A block is being freed, and the address is
not at the beginning of the block.

alloc_not_in_heap The block being freed is not in the heap.

alloc_null The malloc() function returned a null
block.

alloc_returned_bad_align-
ment

The block is misaligned.

any_memory_event All memory notification events.

bad_alignment_argument The block returned by the malloc library
is not aligned on a byte boundary
required by your operating system. The
heap may be corrupted. (This is not a
program error.)

double_alloc Allocator returned a block already in use.
The heap may be corrupted.

double_dealloc Program is attempting to free a block
already freed.

free_not_allocated Program is attempting to free a block
that was not allocated.

guard_corruption Guard corruption was detected when
program deallocated a block.

hoard_low_memory_thresh-
old

Hoard low memory threshold is crossed.

realloc_not_allocated Program attempted to reallocate a block
that was not allocated.

rz_overrun Program attempted to access memory
beyond end of allocated block.

rz_underrun Program attempted to access memory
before start of allocated block.

rz_use_after_free Program attempted to access block after
it was deallocated.

rz_use_after_free_overrun Program attempted to access memory
beyond end of deallocated block.

rz_use_after_free_underrun Program attempted to access memory
before start of deallocated block.

termination_notification Program is about to execute its _exit
routine.

Event Description

 event_action Command-Line Option

148

action is as follows:

Action Description

check_guard_blocks Check for guard blocks and generate a
corruption list.

list_allocations Create a list of all your program’s
allocations.

list_leaks Create a list of all of your program’s leaks.

save_html_heap_-
status_source_view

Save the Heap Status Source report as
an HTML file.

save_memory_debugging_file Save a memory debugging file; you can
reload this file at a later time.

save_text_heap_status_sourc
e_view

Save the Heap Status Source report as a
text file.

 Other Command Line Options

149

Other Command Line Options
The memscript command takes these additional options.

-guard_blocks
Turn on guard blocks.

-red_zones_overruns
Turn on testing for Red Zone overruns.

-red_zones_underruns
Turn on testing for Red Zone underruns.

-detect_use_after_free
Turn on testing for use after memory is freed.

-hoard_freed_memory
Turn on the hoarding of freed memory.

-hoard_low_memory_threshold nnnn
Specify the low memory threshold that will generate an event.

-detect_leaks
Turn on leak detection.

-red_zones_size_ranges min:max,min:max,...
Specify the memory allocation ranges for which Red Zones are in effect.
Ranges can be in the following formats:

x:y allocations from x to y
:y allocations from 1 to y
x: allocations of x and higher
x allocation of x

-maxruntime hh:mm:ss
Specify the maximum amount of time the script should run where:

hh: number hours
mm: number of minutes
ss: number of seconds

As a script begins running, MemoryScape adds information to the beginning
of the log file. This information includes time stamps for both the file when
processes start, the name of the program, and so on.

memscript Example
The example here performs these actions:

• Runs the filterapp program under MemoryScape control.

• Passes an argument of 2 to the filterapp program.

• Whenever any event occurs—an HIA event, SEGV, and the like—saves a
memory debugging file.

• Allows the script to run for no longer than 5 seconds.

• Performs the following activities: use guard blocks, hoard freed memory,
and detect memory leaks.
memscript -maxruntime "00:00:05" \
 -event_action "any_event=save_memory_debugging_file"
\
 -guard_blocks -hoard_freed_memory -detect_leaks \
 ~/Work/filterapp -a 2

150

MemoryScape Command-Line Options

This chapter presents the commands used to invoke MemoryScape as well
as the variables you can place in a .memrc file.

Invoking MemoryScape
Use the memscape command to invoke the MemoryScape GUI and the
memscript command to invoke MemoryScape in batch mode.

Topics in this section are:

• “Syntax” on page 150

• “Options” on page 150

Syntax
{ memscript | memscape } [filename [corefile]] [options]

Arguments

filename
Specifies the pathname of the executable being debugged. This can be
an absolute or relative pathname. The executable must be compiled with

debugging symbols turned on, normally the -g compiler option. Any mul-
tiprocess programs that call fork(), vfork(), or execve() should be linked
with the dbfork library.

corefile
Specifies the name of a core file. Use this argument in addition to file-
name when you want to examine a core file with MemoryScape.

If you specify mutually exclusive options on the same command line (for
example, -ccq and -nccq), MemoryScape uses the last option that you enter.

Options
-a args

Passes all subsequent arguments (specified by args) to the program
specified by filename. This option must be the last on the command line.

-aix_use_fast_trap
Specifies use of the AIX fast trap mechanism. You must either set this op-
tion on the command line or place it within a .memrc file.

-bg color
Same as -background.

-compiler_vars
Some Fortran compilers (HP f90/f77, HP f90, SGI 7.2 compilers) output
debugging information that describes variables the compiler itself has in-

 Invoking MemoryScape

151

vented for purposes such as passing the length of character*(*) vari-
ables. By default, MemoryScape suppresses the display of these
compiler-generated variables.

However, you can specify the -compiler_vars option to display these
variables. This is useful when you are looking for a corruption of a run-
time descriptor or are writing a compiler.

-no_compiler_vars
(Default) Does not show variables created by the Fortran compiler.

-control_c_quick_shutdown
-ccq (Default) Kills attached processes and exits.

-no_control_c_quick_shutdown
-nccq

Invokes code that sometimes allows MemoryScape to better manage the
way it kills parallel jobs when it works with management systems. This has
only been tested with SLURM. It may not work with other systems.

-debug_file consoleoutputfile
Redirects MemoryScape console output to a file named consoleoutput-
file.

Default: All MemoryScape console output is written to stderr.

-display displayname
Sets the name of the X Windows display to displayname. For example, -
display vinnie:0.0 displays MemoryScape on the machine named “vin-
nie.”

Default: The value of your DISPLAY environment variable.

-dump_core
Dumps a MemoryScape core file when an internal error occurs. This is
used to help Perforce Software debug MemoryScape problems.

-no_dumpcore
(Default) Does not dump a core file when it gets an internal error.

-env variable=value
Adds an environment variable to the environment variables passed to
your program by the shell. If the variable already exists, this option re-
places the previous value. You need to use this command for each vari-
able being added; that is, you cannot add more than one variable with an
env command.

-nptl_ threads
Specifies the use of NPTL threads by your application. You need to use
this option only if MemoryScape cannot determine which thread package
your program is using.

-no_nptl_threads
Specifies that your application is not using the NPTL threads package. Use
this option only if MemoryScape thinks your application is using it when it
is not.

-pid pid filename
Attaches to process pid for executable filename after TotalView starts ex-
ecuting.

-search_path pathlist
Specifies a colon-separated list of directories to search for source files.
For example:

memscape -search_path proj/bin:proj/util

-signal_handling_mode “action_list”
Modifies the way in which MemoryScape handles signals. You must en-
close the action_list string in quotation marks to protect it from the
shell.

An action_list consists of a list of signal_action descriptions separated
by spaces:

signal_action[signal_action] ...

 Invoking MemoryScape

152

A signal action description consists of an action, an equal sign (=), and a
list of signals:

action=signal_list

An action can be one of the following: Error, Stop, Resend, or Discard.

A signal_specifier can be a signal name (such as SIGSEGV), a signal
number (such as 11), or a star (*), which specifies all signals. We recom-
mend that you use the signal name rather than the number because
number assignments vary across UNIX sessions.

The following rules apply when you are specifying an action_list:

— If you specify an action for a signal in an action_list,
MemoryScape changes the default action for that signal.

— If you do not specify a signal in the action_list, Memory-
Scape does not change its default action for the signal.

— f you specify a signal that does not exist for the platform,
MemoryScape ignores it.

— If you specify an action for a signal more than once,
MemoryScape uses the last action specified.

If you need to revert the settings for signal handling to MemoryScape’s
built-in defaults, use the Defaults button in the File > Signals dialog
box.

For example, here’s how to set the default action for the SIGTERM signal
to resend:

“Resend=SIGTERM”
Here’s how to set the action for SIGSEGV and SIGBUS to error, the ac-
tion for SIGHUP to resend, and all remaining signals to stop:

“Stop=* Error=SIGSEGV,SIGBUS \
 Resend=SIGHUP”

-shm “action_list”
Same as -signal_handling_mode.

-stderr pathname
Names the file to which MemoryScape writes the target program’s stderr
information while executing within MemoryScape. If the file exists, Mem-
oryScape overwrites it. If the file does not exist, MemoryScape creates it.

-stderr_append
Tells MemoryScape to append the target program’s stderr information
to the file named in the -stderr command or specified in the GUI. If the
file does not exist, MemoryScape creates it.

-stderr_is_stdout
Redirects the target program’s stderr to stdout.

-stdin pathname
Names the file from which the target program reads information while ex-
ecuting within MemoryScape.

-stdout pathname
Names the file to which MemoryScape writes the target program’s
stdout information while executing within MemoryScape. If the file ex-
ists, MemoryScape overwrites it. If the file does not exist, MemoryScape
creates it.

-stdout_append
Tells MemoryScape to append the target program’s stdout information
to the file named in the -stdout command or specified in the GUI. If the
file does not exist, MemoryScape creates it.

-verbosity level
Sets the verbosity level of MemoryScape-generated messages to level,
which can be one of silent, error, warning, or info.

Default: info

 153

Index

Numerics
0xa110ca7f allocation pattern 38, 54
0xdea110cf deallocation pattern 38, 54

A
-a option 125
-a option to memscape command 150
Add Filter Dialog Box 104
Add Filter dialog box 104
Add memory debugging file command 19, 111
Add parallel program option 69
Add parallel program screen 127
Add Program screen 111
Add Programs to Your MemoryScape Session page

65
Add Programs to Your MemoryScape Session

screen 127, 130
adding command-line arguments 65
adding core files 66
adding environment variables 65
adding files 65
adding parallel programs 69
adding programs and files 16
adding remote programs 65
Address not at start of block problems 13
address space 4
addr_not_at_start event 147

advanced memory debugging options 74
Advanced Options button 75
agent linking 136
agent, inseting with env 139
agent. See heap debugging.
agent’s shared library 8
AIX

compiling 64-bit code 123
linking C++ to dbfork library 123
linking to dbfork library 123

aix_install_ tvheap_mr.sh script 140
aix_use_fast_trap command-line option 150
-aix_use_fast_trap option 150
allocation

0xa110ca7f pattern 54
adding guards 77
block painting 2
information 98

allocation focus 106
Allocation Location tab 23
allocation pattern 38
alloc_not_in_heap event 147
alloc_null event 147
alloc_returned_bad_alignment event 147
any_event event 147
arguments, remembering 128

Attach to running program screen 130
attaching to MPICH job 130
attaching to mprun job 134
attaching to PE jobs 133
attaching to programs 139
attaching to programss 126
attaching to running program 66
attaching to running program, limitation 66, 126
attaching to Sun MPI job 134
autolaunching 126
automatic variables 10
automatically halting program 85

B
backtrace

deallocation 23
recording 92
reports 101
which displayed 26

backtrace ID 98
backtrace ID, defined 101
-backtrace option 33
backtrace reports 97
backtrace_depth TV_HEAP_ARGS value 43
backtraces 22, 26, 33

setting depth 33

 154

setting trim 33
backtrace_trim TV_HEAP_ARGS value 43
bad_alignment_ argument event 147
Basic Options button 75
bg command-line option 150
-bg option 150
bit painting

0xa110ca7f 54
0xdea110cf 54

bit pattern
writing 28

bit pattern, writing 2
-bkeepfile option 123
Block Allocation tab 92
block color coding 96
Block Deallocation tab 92
Block Details tab 23, 92
block display 94
block highlighting 96
block information 46, 96
block painting 2, 14, 17, 28

changing pattern 54
defined 2

Block Properties window 109
Block Properties window. 90
block tagging 28
blocks, allocating guards 77
bss data error 23
byte display 110

C
C++

including libdbfork.h 123

ccq command-line option 151
changing filter order 104
changing guard block patterns 78
changing guard block size 78
chart report 7, 87
check_guard_blocks action 148
checking for problems 2, 61
checking guard blocks 33
-check_interior option 37
color coding of blocks 96
Command line arguments area 128
command-line arguments, entering 65
command-line arguments, setting 61
command-line options

-aix_use_fast_trap 150
-bg 150
-ccq 151
-control_c_quick_shutdown 151
-debug_file 151
-display 151
-dump_core 151
-env 151
-nccq 151
-no_compiler_vars 151
-no_control_c_quick_shutdown 151
-no_dumpcore 151
-no_nptl_threads 151
-nptl_threads 151
-pid 151
-search_path 151
-shm 152
-signal_handling_mode 151
-stderr 152

-stderr_append 152
-stderr_is_stdout 152
-stdin 152
-stdout 152
-stdout_append 152
-verbosity 152

commands
dheap -guards 33

companring memory states 70
Compare Memory Report 111
comparing memory states 19, 113
comparing state information 111
comparisons

process 115
compiling 64-bit code on AIX 123
compiling programs 122
concealed allocation 15
Configuration page 28
configuring 64
console output redirection 151
context menu, controlling processes 85
control_c_quick_shutdown command-line option

151
controlling execution 85
controlling processes

from context menu 85
individually 85

controlling program execution task 82
core

dumping for MemoryScape 151
core files

writing 77
core files, adding 66
core fils, starting within MemoryScape 125

 155

corrupt memory 17
notification 108

Corrupted Guard Blocks Report 51
Corrupted Memory report 67, 108
criteria

changing order 105
filters 105
operators 106
property 106
removing 105

Current Processes area 94
custody changes 15

D
dangling interior pointer 36
dangling pointer

problems 28
dangling pointers 12, 36

example 29
dangling pointers and leaks

compared 12
data section 5
data segment memory 86
Data Source area 114
Data Source controls 98
dbfork and Linux for Mac OS X 124
dbfork library

linking with 123
dbg files 77
deallocate, defined 9
deallocated memory, hoarding 118
deallocated memory, retaining 56
deallocation

0xdea110cf pattern 54
backtrace 23
block painting 2
notifications 92

deallocation information 98
deallocation pattern 38
Deallocation tab 23
debug_file command-line option 151
-debug_file option 151
debugging command-line option 16
debugging MPICH applicaitions 129
debugging options 17

Painting memory 80
depth, backtraces 33
Detailed program and library report 87
Detect Leaks checkbox 98
-detect_leaks 149
dheap

-compare 32
-disable 31
ed_zones 32
-enable 31
example 32
-export 35
-export, data option 35
-export, output option 35
-export, set show_backtraces option 35
-export, set_show_code option 35
-filter 32, 36
-filter, enable filtering 35
-filter, enabling a filter 35
-hoard 32
-info 31

-leaks 32
-nonotify 32
-notify 32
-paint 32
status of Memory Tracker 31

dheap -guards 33
disabling all filters 104
discarding memory information, when 17
disk icon, memory comparisons 114
display command-line option 151
-display option 151
display_allocations_on_exit 43
-display_specifiers command-line option 146
dlopen

and RTLD_DEEPBIND on Linux 144
double_dealloc event 147
dump_core command-line option 151
dynamically allocate space 13

E
Edit Filter Dialog Box 104
editing filters 104
Enable Filtering check box 98, 103
Enable Filtering checkbox 95
enable guard blocks option 67
enabling all filters 104
enabling painting 80
entering command-line arguments 65
entering environment variables 65
-env command-line option 151
env, inserting agent 139
environment variables

LD_LIBRARY_PATH 124

 156

environment variables, entering 65
environment variables, TV_HEAP_ARGS 43
Envrionment variables tab 128
error

freeing stack memory 23
error notification 90
error notifications 76
event backtrace 22
event indicator 21, 76
Event Location tab 22, 92
event notification options 90
-event_action command-line option 147
events 90

writing file when occurring 77
examining memory 45
executing on remote hosts 65
execution controls 85
execution, stopping 66
execve() 123
exit events 17
_exit routine 75
exit, notification option 75
Export Memory Data command 19, 66, 111
exporting memory data 66
extending a block 13

F
fifo hoard queue 34
File > Export command 77
files, libdbfork.h 123
filter criteria 105
Filter out this entry 103
filter properties 104

filtering 95, 98, 103
heap information 35
Heap Status Graphical Report 51
overview 51
reports 45

filters
changing criteria order 105
criteria 106
criteria operators 106
criteria properties 106
disabling all 104
editing 104
enabling all 104
naming 105
ordering 104
removing 104
removing criteria 105

filters, editing 104
finding deallocation problems 13
finding differences 114
finding heap heap allocation problems 13
finding memory leaks 25
fork() 123
Fortran, tracking memory 8
free not allocated problems 13
free problems 2, 32

finding 21
free stack memory errir 92
freeing bss data error 23
freeing data section memory error 23
freeing freed memory 23
freeing memory that is already freed error 23
freeing stack memory error 23

freeing the wrong address 24
freeing the wrong address error 24
free_not_allocated event 147
function backtrace, backtrace

G
-g 16
Generate a core file and abort the program option

76
Generate a lightweight memory data file option 76
graphical heap display 23
Graphical report 45, 47
Graphical View 46
graphically viewing the heap 94
Guard allocated memory option 77
guard block display 110
guard blocks 2, 17

altering 108
changing patterns 78
changing size 78
checking 33
checking for errors 51
defined 108
enabling 108
explained 51
manually checking for 78
maximum size 78
medium debugging level 78
notification 17, 33, 51
notifications 108
notify on deallocation problem 77
overwriting 17
patterns 108

-guard_blocks command-line option 149

 157

guard_corruption event 147

H
Halt execution at process exit 17
Halt execution at process exit option 75
Halt execution on memory event or error option 75,

90
handling signals 151
header section 6
heap

defined 13
status 19
viewing graphically 94

heap allocation problems 13
heap API 13

stopping allocation when misused 13
heap API problems 32
heap debugging 21

attaching to programs 139
environment variable 139
freeing bss data 23
freeing data section memory error 23
freeing memory that is already freed error 23
freeing the wrong address 24
functions tracked 21
IBM PE 142
incorporating agent 136
interposition

defined 8
linker command-line options 136
MPICH 142
preloading 8
realloc problems 24
RMS MPI 142

tvheap_mr.a
library 140

using 21
heap displays, simplifying 35
heap information 97

filtering 35
Heap Information tab 96
heap information, saving 35
heap interpositiona agent 8
heap library functions 8
heap memory 86
Heap Source Backtrace report 101
Heap Status Backtrace report 102
Heap Status Graphical Report 67, 93, 94, 96

color coding key 46
zoom controls 94

Heap Status Graphical report 45, 47
Heap Status Graphical Report screen 94
Heap Status Graphical View 46
Heap Status reports 94
heap status reports 67
Heap Status Source Report 98
Heap Status Source report 102
Heap Usage Monitor 113
heap usage monitor 85
HIA, linking 18
hoard capacity 34
hoard information 98
hoard size 81
-hoard_freed_memory command-line option 149
hoarding 18, 28, 34, 56

block maximum 34
deallocated memory 118
defined 2

enabling 34
finding a multithreading problem 56
finding dangling pointer references 56
KB size 34
option 118
status 34

host names, specifying’specifiying host names 125
hosts, remote 65
HTML, saving reports as 117

I
identifying leaks within libraries 87
importing memory state 111
individually controlling processes 85
interposition 8, 90
interposition defined 8
-is_dangling option 36

L
LAM and MemoryScape 133
LD_PRELOAD heap debugging environment vari-

able 139
leak consolidation 37
leak detection 37

checking interior 37
Leak Detection report 27
Leak Detection reports 25, 67
Leak Source report 102
leaks

concealed ownership 15
custody changes 15
defined 2, 14
-leaks option 37
listing 2

 158

orphaned ownership 14
showing 98
underwritten destructors

leaks 15
why they occur 14

leaks and dangling pointers
compared 12

leaks reports 102
leightweight memory file

writing 77
lib directory 105
libdbfork.a 123
libdbfork.h file 123
LIBPATH and linking 140
libraries

leaks within 87
library report 87
linking 5
linking agent 136
linking MemoryScape 18
linking to dbfork library 123

AIX 123
C++ and dbfork 123
SunOS 5 124

list_allocations action 148
listing leaks 2
list_leaks action 148
load file 5
loading programs and files 16

M
Mac OS X, linking dbfork 124
machine code section 6
magnifying glass controls 94

MALLOCTYPE heap debugging environment vari-
able 139, 140

Manage Filters option 103
Manage Process and Files screen 82, 85
managing processes 85
-maxruntime command-line option 149
memalign_strict_alignment_even_multiple

TV_HEAP_ARGS value 44
memory

data segment 86
examining 45
heap 86
maps 4
pages 4
stack 86
text segment 86
total virtual memory 87
virtual stack 87

memory block painting 17
Memory Comparison report 114
memory comparisons 70, 113
Memory Comparisons report 67
Memory Comparisons screen 114
Memory Content tab 96
memory contents tab 110
memory corruption 2
memory data, exporting 66
Memory Debugger

functions tracked 8
using 16

Memory Debugging Data Filters Dialog Box 104
memory debugging file 112

indicator 112
memory debugging options 16

advanced 74
basic 71
Guard allocated memory 77
Halt execution at process exit 75
Halt execution on memory event or error 75
high 74
low 74
medium 74
screen 71

Memory Debugging Options screen 74, 90
memory error notification 17
Memory Event Details Window

Point of Deallocation tab 23
memory hoarding 18
memory leak

defined 14
memory painting 78, 80
Memory Reports area 67
memory state

importing 111
restoring 111
saving 111

memory states
comparing 19

memory states, comparing 19
memory usage

seeing 86
Memory Usage reports 7, 19, 67, 86

chart 87
Library 87
Process 87

memory, painting 119
memory, reusing 34

 159

MemoryScape
command options 150
linking 18
starting 16, 61

MemoryScape and LAM 133
MemoryScape and MPICH 129
MemoryScape and PE 131
MemoryScape and Sun MPI 134
memscape command 61, 64, 129
memscript command 64
merging object files 5
MmeoryScape command line 125
MPI

on Sun 134
MPI debugging 70
MPI issues 131
MPI launcher arguments area 128
MPI programs, starting 69, 126
MPICH

and heap debugging 142
MPICH and MemoryScape 129
MPICH and poe 129
MPICH applications, debugging 129
MPICH library, selecting 129
MPICH P4 procgroup 130
MPICH, attaching to job 130
mpirun 125
mprun 134
mprun command 134
mprun job, attaching to 134

N
Naming Options dialog box 77

-nccq option 151
-no_compiler_vars option 151
-no_control_c_quick_shutdown option 151
Nodes, selecting number of 128
no_dumpcore command-line option 151
-no_dump_core option 151
non-invasive 8
no_nptl_threads command-line option 151
notification 32
notification for guard blocks 33
notifications 17, 90, 91

defined 17
error 76, 90
exit 17
guard blocks 17, 77
setting individual events 76

-notify option 32
Notify when deallocated 93
Notify when reallocated 93
notifying at process exit option 75
nptl_threads command-line option 151

O
object files

merging 5
od-like features 110
options 17

advanced 74
-aix_use_fast_trap 150
basic 71
Guard allocated memory 77
Halt execution at process exit 75
Halt execution on memory event or error 75

high 74
low 74
medium 74
painting 119
Painting memory 80
setting 71

orphaned ownership 14
output TV_HEAP_ARGS value 44
Overall Totals area 46
overwriting guard blocks 17

P
Paint memory option 80
-paint option 37
painting 37

allocation pattern 38
blocks 2
deallocated memory 56
deallocation pattern 38
enabling 37
memory 78, 80, 119
options for 119
pattern 119
patterns 78, 80
zero allocation 37

painting. See block painting
parallel progams, adding 69
Parallel system, selecting 128
parameter values

returning 10
parameters

by reference 11
by value 11

 160

passing arguments to programs 125
passing pointer to memory to lower frames 11
passing pointers 11
patterns for guard blocks 108
patterns for painting 119
PC, setting 13
PE and MemoryScape 131
PE jobs, attaching 133
pid command-line option 151
poe and MPICH 129
poe, starting using 132
Point of Deallocation tab 23
pointers

dangling 12
passing 10
realloc problem 13

pop-up with block information 96
port number. 125
preload variables, by platform 139
preloading 8, 18
preloading Memory Debugger agent 8
process comparisons 115
process control from context menu 85
Process Event screen 93
Process Events screen 21, 91
process report 87
Process Status and Control area 69
processes, attaching to 126
processes, individually controlling 85
processes, managing 85
program execution, controlling 82
program, attaching 66
program, attaching limitation 66, 126

program, mapping to disk 4
programs

compiling 122
programs, attaching to 126
programs, passing arguments to 125
properties dialog box 61
Properties window 93
properties, filters 104
prun, using 134

R
reachable blocks 37
reading saved memory state information 67
realloc errors 24
realloc not allocated problems 13
realloc pointer problem 13
realloc problems 13, 24

finding 21
reallocation timing 12
realloc_not_ allocated event 147
recording memory requests 74
reference counting 15
Related Blocks area 47
-remote 125
remote computers, debugging on 125
remote hosts 65
remote login 132
remote programs, adding 65
remote programs, starting 125
removing filters 104
reports

filtering 45
when to create 17

requests, recording 74
restoring memory state 111
retaining deallocated memory 56
returning parameter values 10
reuse notifications 92
reusing memory 34
Reverse Diff button 115
RTLD_DEEPBIND

and dlopen on Linux 144
running out of memory 14
run-time events 90

S
Save Report command 117
saved state information, using 111
save_html_heap_ status_source_view action 148
save_memory_ debugging_file action 148
save_text_heap_status_source_view action 148
saving heap information 35
saving memory state 111
saving memory state information 67
saving reports

as HTML 117
search controls 95
search_path command-line option 151
sections

data 5
header 6
machine code 6
symbol table 5

seeing memory usage 86
Selected Block area 46
selecting a block 96

 161

setting MemoryScape options 71
setting the PC 13
setting timeouts 132
-shm option 151, 152
show_backtrace item 146
show_backtrace_id item 146
show_block_address item 146
show_flags item 146
show_guard_details item 146
show_guard_id item 146
show_guard_status item 146
show_image item 146
showing backtraces 33
showing leaks 98
show_leak_stats item 146
show_pc item 146
show_pid item 146
signal_handling_mode command-line option 151
-signal_handling_mode option 151
signals, handling in MemoryScape 151
SLURM, control_c_quick_shutdown variable 151
source report 97
source reports 98
space, dynamically allocating 13
stack frames 10

arranging 9
stack memory 9, 11, 86
stack virtual memory 87
stack, compared to data section 9
stacl frame

data blcok 10
staring MPI programs 69
starting MemoryScape 16, 61, 125

memscript command 64
starting MPI programs 126
starting remove programs 125
starting with poe 132
state information

comparing 111
exporting 66
when discarded 66

-stderr command-line option 152
-stderr_append command-line option 152
stderr_append command-line option 152
stderr_is_stdout command-line option 152
stdin command-line option 152
-stdout command-line option 152
stdout_append command-line option 152
stopping execution 66, 91
stopping execution on heap API misue 13
stopping when free problems occur 2
strdup allocating memory 13
Summary screen 113
Sun MPI 134
Sun MPI and MemoryScape 134
SunOS 5

linking to dbfork library 124
switch-based communications 132
symbol table section 5

T
-tag_alloc 42
tagging 28, 37, 42

notify on dealloc 42
notify on realloc 42

Tasks, selecting number of 128

tasks, specifying 128
termination_ notification event 147
text segment memory 86
timing of reallocations 12
tmeouts, setting 132
tooltip displaying block data 46
TotalView lib directory 105
tracking memory problems 21
tracking realloc problems 24
trim, backtrace 33
-tv option 129
tvdsvr 66, 125
TVHEAP_ARGS 70
TV_HEAP_ARGS environment variable 43

backtrace_depth 43
backtrace_trim 43
display_allocations_on_exit 43
memalign_strict_alignment_even_multiple 44
output 44
verbosity 44

TV_HEAP_ARGS value 43
TVHEAP_DEEPBIND

controlling RTLD_DEEPBIND on Linux 145
tvheap_mr.a

aix_install_tvheap_mr.sh script 140
and aix_malloctype.o 140
creating using poe 140
dynamically loading 140
libc.a requirements 140
pathname requirements 140
relinking executables on AIX 140

tvheap_mr.a library 140

 162

U
underwritten destructors 15
using env to insert agent 139
using prun 134
using the Memory Debugger 16

V
-verbosity option 152
verbosity TV_HEAP_ARGS value 44
viewing memory contents 110

viewing the heap graphically 94
views

simplifying 35
virtual memory 87
virtual stack memory 87
visual block display 94

W
watchpoints 28
-Wl,-bkeepfile option 123
writing a core file 77

writing a lightweight memory file 77
writing core files 77
writing lightweight memory files 77
wrong address, freeing 24

Z
zero allocation 37
zero allocation painting 37
zoom controls 94
zooming 89

	Contents
	Locating Memory Problems
	Checking for Problems
	Programs and Memory
	Behind the Scenes
	Your Program’s Data
	The Data Section
	The Stack
	The Heap

	Starting MemoryScape
	Using MemoryScape Options
	Preloading MemoryScape

	Understanding How Your Program is Using Memory
	Finding free() and realloc() Problems
	Event and Error Notification
	Types of Problems

	Finding Memory Leaks
	Fixing Dangling Pointer Problems
	Dangling Pointers

	Batch Scripting and Using the CLI
	Batch Scripting Using tvscript
	Using the dheap Command
	TVHEAP_ARGS

	Examining Memory
	Block Properties

	Filtering
	Using Guard Blocks
	Using Red Zones
	Using Guard Blocks and Red Zones
	Block Painting
	Hoarding
	Example 1: Finding a Multithreading Problem
	Example 2: Finding Dangling Pointer References

	Debugging with TotalView

	Memory Tasks
	Starting MemoryScape
	Adding Programs and Files to MemoryScape
	Attaching to Programs and Adding Core Files
	Stopping Before Finishing Execution
	Exporting Memory Data
	MemoryScape Information
	Where to Go Next
	Basic Options
	Advanced Options
	Where to Go Next
	Controlling Program Execution from the Home | Summary Screen
	Controlling Program Execution from the Manage Processes Screen
	Controlling Program Execution from a Context Menu
	Where to Go Next
	Information Types
	Process and Library Reports
	Chart Report
	Where to Go Next
	Error Notifications
	Deallocation and Reuse Notifications
	Where to Go Next
	Window Sections
	Block Information
	Bottom Tabbed Areas
	Where to Go Next
	Heap Status Source Report
	Heap Status Source Backtrace Report
	Where to Go Next
	Adding, Deleting, Enabling and Disabling Filters
	Adding and Editing Filters
	Where to Go Next
	Examining Corrupted Memory Blocks
	Viewing Memory Contents
	Procedures for Exporting and Adding Memory Data
	Using Saved State Information
	Where to Go Next
	Overview
	Obtaining a Comparison
	Memory Comparison Report
	Where to Go Next
	Saving Report Information

	Remote Access
	Using Remote Display

	Creating Programs for Memory Debugging
	Compiling Programs
	Linking with the dbfork Library
	dbfork on IBM AIX on RS/6000 Systems
	dbfork and Linux or Mac OS X
	dbfork and SunOS 5 SPARC

	Ways to Start MemoryScape
	Attaching to Programs
	Setting Up MPI Debugging Sessions
	Debugging MPI Programs
	Debugging MPICH Applications
	Starting MPI Issues
	Debugging IBM MPI Parallel Environment (PE) Applications
	Debugging LAM/MPI Applications
	Debugging QSW RMS Applications
	Debugging Sun MPI Applications

	Linking Your Application with the Agent
	Using env to Insert the Agent
	Installing tvheap_mr.a on AIX
	LIBPATH and Linking

	Using MemoryScape in Selected Environments
	MPICH
	IBM PE
	RMS MPI
	Mac OS
	Linux

	MemoryScape Scripting
	display_specifiers Command- Line Option
	event_action Command-Line Option
	Other Command Line Options
	memscript Example

	MemoryScape Command-Line Options
	Invoking MemoryScape
	Syntax
	Options

	Index

